Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Barton is active.

Publication


Featured researches published by Brian Barton.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Orthogonal acoustic dimensions define auditory field maps in human cortex

Brian Barton; Jonathan H. Venezia; Kourosh Saberi; Gregory Hickok; Alyssa A. Brewer

The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into “clover leaf” clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.


Frontiers in Psychology | 2014

Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields

Alyssa A. Brewer; Brian Barton

Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimers disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD.


Archive | 2012

Visual Field Map Organization in Human Visual Cortex

Alyssa A. Brewer; Brian Barton

The search for organizing principles of visual processing in cortex has proven long and fruitful, demonstrating specific types of organization arising on multiple scales (e.g., magnocellular / parvo-cellular pathways [1] and ocular dominance columns [2]). One of the more important larger scale organizing principles of visual cortical organization is the visual field map (VFM): neurons whose visual receptive fields lie next to one another in visual space are located next to one another in cortex, forming one complete representation of contralateral visual space [3]. Each VFM subserves a specific computation or set of computations; locating these VFMs allows for the systematic exploration of these computations across visual cortex [4, 5]. It has been suggested that this retinotopic organization of VFMs allows for efficient connectivity between neurons that represent nearby locations in visual space, likely necessary for such processes as lateral inhibition and gain control [6-9]. This chapter will discuss the primary neuroimaging techniques used for measuring human VFMs, our current understanding of the organization of visuospatial representations across human visual cortex, the present state of our knowledge of white matter connectivity among these representations, and how these measurements inform us about the functional divisions of visual cortex in human.


Annual Review of Neuroscience | 2016

Maps of the Auditory Cortex

Alyssa A. Brewer; Brian Barton

One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.


Proceedings of the National Academy of Sciences of the United States of America | 2015

fMRI of the rod scotoma elucidates cortical rod pathways and implications for lesion measurements

Brian Barton; Alyssa A. Brewer

Significance We use functional MRI to investigate the cortical effects on V1, V2, V3, hV4, and VO-1 when humans’ eyes have adapted to low-light vision. We show that populations of neurons with receptive fields interacting with the central rod scotoma are silenced because of lack of stimulation, shift their locations ectopically, and/or scale their sizes in some maps because of partial stimulation when the receptive fields overlap with the rod scotoma. These same effects have been cited as hallmarks of long-term reorganization, but our results show that these effects can be the result of the normal short-term adaptation of the visual system. In contrast, we observe no cortical differences between general rod and cone input other than rod scotoma effects. Are silencing, ectopic shifts, and receptive field (RF) scaling in cortical scotoma projection zones (SPZs) the result of long-term reorganization (plasticity) or short-term adaptation? Electrophysiological studies of SPZs after retinal lesions in animal models remain controversial, because they are unable to conclusively answer this question because of limitations of the methodology. Here, we used functional MRI (fMRI) visual field mapping through population RF (pRF) modeling with moving bar stimuli under photopic and scotopic conditions to measure the effects of the rod scotoma in human early visual cortex. As a naturally occurring central scotoma, it has a large cortical representation, is free of traumatic lesion complications, is completely reversible, and has not reorganized under normal conditions (but can as seen in rod monochromats). We found that the pRFs overlapping the SPZ in V1, V2, V3, hV4, and VO-1 generally (i) reduced their blood oxygen level-dependent signal coherence and (ii) shifted their pRFs more eccentric but (iii) scaled their pRF sizes in variable ways. Thus, silencing, ectopic shifts, and pRF scaling in SPZs are not unique identifiers of cortical reorganization; rather, they can be the expected result of short-term adaptation. However, are there differences between rod and cone signals in V1, V2, V3, hV4, and VO-1? We did not find differences for all five maps in more peripheral eccentricities outside of rod scotoma influence in coherence, eccentricity representation, or pRF size. Thus, rod and cone signals seem to be processed similarly in cortex.


Neurobiology of Language | 2016

Human Auditory Cortex

Brian Barton; Alyssa A. Brewer

The cortical organization of the human auditory system has been incompletely measured. Although we know some of the features and locations of low-level processing in cortex, until recently we were recently able to localize individual auditory field maps (AFMs). Two recently discovered orthogonal acoustic dimensions are the key insight measuring AFMs, tonotopy and periodotopy. Because tonotopic and periodotopic gradients are represented orthogonally to one another on the cortical surface, it is now possible to differentiate the locations of individual maps. Additionally, a new organizational scheme of AFMs has been revealed: the “clover leaf” cluster. With these new insights, researchers can now delineate AFMs and therefore investigate which computations, such as those relevant for speech perception, are performed in each map. Furthermore, auditory and visual cortices are similarly organized into specific sensory field maps and into “clover leaf” clusters, indicating that cortical sensory systems may have common organizational structures.


Journal of Vision | 2014

Paradoxical visuomotor adaptation to reversed visual input is predicted by BDNF Val66Met polymorphism.

Brian Barton; Andrew Treister; Melanie Humphrey; Garen Abedi; Steven C. Cramer; Alyssa A. Brewer

Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain, influencing neural development, plasticity, and repair (Chen et al., 2004; Thoenen, 1995). The BDNF gene contains a single-nucleotide polymorphism (SNP) called Val(66)Met. The Met allele interferes with intracellular BDNF-trafficking, decreases activity-dependent BDNF secretion, and consequently is often associated with a shift from plasticity to stability in neural circuits (Egan et al., 2003). We investigated the behavioral consequences of the presence of the Met allele by comparing how 40 heterozygous subjects with the Val/Met genotype and 35 homozygous subjects with the Val/Val genotype performed on visuomotor tasks (reaching and navigation) under two conditions: normal vision and completely left-right reversed vision. As expected, subjects did not differ in their short-term ability to learn the tasks with normal vision (p = 0.58). Intuitively, it would be expected that homozygous Val/Val subjects with a propensity for greater BDNF-induced activity-dependent plasticity would learn new tasks more quickly than heterozygous Val/Met subjects with decreased BDNF secretion (Gilbert, Li, & Piech, 2009). However, we found the opposite here. When short-term mechanisms of visuomotor adaptation were engaged to compensate for the misalignment of visual and somatomotor information created by the left-right reversal of vision, heterozygous Val/Met subjects learned significantly more quickly than their homozygous Val/Val counterparts (p = 0.027). Our results demonstrate the paradoxical finding that the presence of the Met allele, which is thought to promote cortical stability, here improves immediate visuomotor adaptation to left-right-reversed visual input.


Frontiers in Integrative Neuroscience | 2017

Visual Field Map Clusters in High-Order Visual Processing: Organization of V3A/V3B and a New Cloverleaf Cluster in the Posterior Superior Temporal Sulcus

Brian Barton; Alyssa A. Brewer

The cortical hierarchy of the human visual system has been shown to be organized around retinal spatial coordinates throughout much of low- and mid-level visual processing. These regions contain visual field maps (VFMs) that each follows the organization of the retina, with neighboring aspects of the visual field processed in neighboring cortical locations. On a larger, macrostructural scale, groups of such sensory cortical field maps (CFMs) in both the visual and auditory systems are organized into roughly circular cloverleaf clusters. CFMs within clusters tend to share properties such as receptive field distribution, cortical magnification, and processing specialization. Here we use fMRI and population receptive field (pRF) modeling to investigate the extent of VFM and cluster organization with an examination of higher-level visual processing in temporal cortex and compare these measurements to mid-level visual processing in dorsal occipital cortex. In human temporal cortex, the posterior superior temporal sulcus (pSTS) has been implicated in various neuroimaging studies as subserving higher-order vision, including face processing, biological motion perception, and multimodal audiovisual integration. In human dorsal occipital cortex, the transverse occipital sulcus (TOS) contains the V3A/B cluster, which comprises two VFMs subserving mid-level motion perception and visuospatial attention. For the first time, we present the organization of VFMs in pSTS in a cloverleaf cluster. This pSTS cluster contains four VFMs bilaterally: pSTS-1:4. We characterize these pSTS VFMs as relatively small at ∼125 mm2 with relatively large pRF sizes of ∼2–8° of visual angle across the central 10° of the visual field. V3A and V3B are ∼230 mm2 in surface area, with pRF sizes here similarly ∼1–8° of visual angle across the same region. In addition, cortical magnification measurements show that a larger extent of the pSTS VFM surface areas are devoted to the peripheral visual field than those in the V3A/B cluster. Reliability measurements of VFMs in pSTS and V3A/B reveal that these cloverleaf clusters are remarkably consistent and functionally differentiable. Our findings add to the growing number of measurements of widespread sensory CFMs organized into cloverleaf clusters, indicating that CFMs and cloverleaf clusters may both be fundamental organizing principles in cortical sensory processing.


Archive | 2016

Changes in Visual Cortex in Healthy Aging and Dementia

Alyssa A. Brewer; Brian Barton

This chapter reviews the differences in specific structural and functional characteris‐ tics of human visual cortex among young adults, healthy aging adults, and patients with dementia, with a primary focus on those with Alzheimer’s disease (AD). Such visual cortex changes have been shown to underlie many of the behavioral deficits that develop in healthy aging and AD. Measurements of disordered visual cortex in dementia patients may be possible early in the course of neurodegeneration and thus may be useful for improving early diagnosis of these devastating diseases.


Journal of Vision | 2010

Visual field mapping of visuomotor adaptation to prisms

Ling Lin; Brian Barton; Derrik E. Asher; Christian Herrera; Alyssa A. Brewer

Stratton (Psych. Rev., 1897) first described visuomotor adaptation to altered visual input by wearing inverting prism spectacles. A number of studies (e.g., Miyauchi et al., J. Physio., 2004) have tried to confirm his findings and further examine the question of how responses in visual cortex change during this adaptation process. There is evidence from these studies that changes occur in parieto-occipital cortex. Recently, several human visual field maps have been described in parietal cortex that are thought to be involved in visuomotor integration (Swisher et al., J. Neurosci., 2007). Here, we further investigate the adaptation of these cortical maps to an extreme alteration of visuomotor processing.

Collaboration


Dive into the Brian Barton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Lin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garen Abedi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kourosh Saberi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge