Brian Becknell
Nationwide Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian Becknell.
Blood | 2010
Don M. Benson; Courtney E. Bakan; Anjali Mishra; Craig C. Hofmeister; Yvonne A. Efebera; Brian Becknell; Robert A. Baiocchi; Jianying Zhang; Jianhua Yu; Megan K Smith; Carli N Greenfield; Pierluigi Porcu; Steven M. Devine; Rinat Rotem-Yehudar; Gerard Lozanski; John C. Byrd; Michael A. Caligiuri
T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti-PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1(+) MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011s enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.
Journal of Experimental Medicine | 2006
Aharon G. Freud; Akihiko Yokohama; Brian Becknell; Melissa T. Lee; Hsiaoyin C. Mao; Amy K. Ferketich; Michael A. Caligiuri
Human natural killer (NK) cells originate from CD34(+) hematopoietic progenitor cells, but the discrete stages of NK cell differentiation in vivo have not been elucidated. We identify and functionally characterize, from human lymph nodes and tonsils, four NK cell developmental intermediates spanning the continuum of differentiation from a CD34(+) NK cell progenitor to a functionally mature NK cell. Analyses of each intermediate stage for CD34, CD117, and CD94 cell surface expression, lineage differentiation potentials, capacity for cytokine production and natural cytotoxicity, and ETS-1, GATA-3, and T-BET expression provide evidence for a new model of human NK cell differentiation in secondary lymphoid tissues.
Advances in Immunology | 2005
Brian Becknell; Michael A. Caligiuri
Natural killer (NK) cells are CD56+CD3- large granular lymphocytes that constitute a key component of the human innate immune response. In addition to their potent cytolytic activity, NK cells elaborate a host of immunoregulatory cytokines and chemokines that play a crucial role in pathogen clearance. Furthermore, interactions between NK and other immune cells are implicated in triggering the adaptive, or antigen-specific, immune response. Interleukin-2 (IL-2) and IL-15 are two distinct cytokines with partially overlapping properties that are implicated in the development, homeostasis, and function of NK cells. This review examines the pervasive effects of IL-2 and IL-15 on NK cell biology, with an emphasis on recent discoveries and lingering challenges in the field.
Nature Genetics | 2005
Li Yu; Chunhui Liu; Jeff Vandeusen; Brian Becknell; Zunyan Dai; Yue Zhong Wu; Aparna Raval; Te Hui Liu; Wei Ding; Charlene Mao; Shujun Liu; Laura T. Smith; Stephen C. Lee; Laura Z. Rassenti; Guido Marcucci; John C. Byrd; Michael A. Caligiuri; Christoph Plass
DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.
Immunity | 2010
Tiffany Hughes; Brian Becknell; Aharon G. Freud; Susan McClory; Edward L. Briercheck; Jianhua Yu; Charlene Mao; Chiara Giovenzana; Gerard J. Nuovo; Lai Wei; Xiaoli Zhang; Mikhail A. Gavrilin; Mark D. Wewers; Michael A. Caligiuri
Among human natural killer (NK) cell intermediates in secondary lymphoid tissue (SLT), stage 3 CD34(-)CD117(+)CD161(+)CD94(-) immature NK (iNK) cells uniquely express aryl hydrocarbon receptor (AHR) and interleukin-22 (IL-22), supporting a role in mucosal immunity. The mechanisms controlling proliferation and differentiation of these cells are unknown. Here we demonstrate that the IL-1 receptor IL-1R1 was selectively expressed by a subpopulation of iNK cells that localized proximal to IL-1beta-producing conventional dendritic cells (cDCs) within SLT. IL-1R1(hi) iNK cells required continuous exposure to IL-1beta to retain AHR and IL-22 expression, and they proliferate in direct response to cDC-derived IL-15 and IL-1beta. In the absence of IL-1beta, a substantially greater fraction of IL-1R1(hi) iNK cells differentiated to stage 4 NK cells and acquired the ability to kill and secrete IFN-gamma. Thus, cDC-derived IL-1beta preserves and expands IL-1R1(hi)IL-22(+)AHR(+) iNK cells, potentially influencing human mucosal innate immunity during infection.
Cancer Research | 2005
Shujun Liu; Tiansheng Shen; Lenguyen Huynh; Marko I. Klisovic; Laura J. Rush; Jamie L. Ford; Jianhua Yu; Brian Becknell; Yu Li; Chunhui Liu; Tamara Vukosavljevic; Susan P. Whitman; Kun Sang Chang; John C. Byrd; Danilo Perrotti; Christoph Plass; Guido Marcucci
The translocation t(8;21)(q22;q22) in acute myeloid leukemia (AML) results in the expression of the fusion protein RUNX1/MTG8, which in turn recruits histone deacetylases (HDAC) to silence RUNX1 target genes [e.g., interleukin-3 (IL-3)]. We previously reported that expression of the RUNX1/MTG8 target gene IL-3 is synergistically restored by the combination of inhibitors of HDACs (i.e., depsipeptide) and DNA methyltransferases (DNMT; i.e., decitabine) in RUNX1/MTG8-positive Kasumi-1 cells. Thus, we hypothesized that DNMT1 is also part of the transcriptional repressor complex recruited by RUNX1/MTG8. By a chromatin immunoprecipitation assay, we identified a RUNX1/MTG8-DNMT1 complex on the IL-3 promoter in Kasumi-1 cells and in primary RUNX1/MTG8-positive AML blasts. The physical association of RUNX1/MTG8 with DNMT1 was shown by coimmunoprecipitation experiments. Furthermore, RUNX1/MTG8 and DNMT1 were concurrently released from the IL-3 promoter by exposure to depsipeptide or stabilized on the promoter by decitabine treatment. Finally, we proved that RUNX1/MTG8 and DNMT1 were functionally interrelated by showing an enhanced repression of IL-3 after coexpression in 293T cells. These results suggest a novel mechanism for gene silencing mediated by RUNX1/MTG8 and support the combination of HDAC and DNMT inhibitors as a novel therapeutic approach for t(8;21) AML.
Blood | 2009
Tiffany Hughes; Brian Becknell; Susan McClory; Edward L. Briercheck; Aharon G. Freud; Xiaoli Zhang; Hsiaoyin Mao; Gerard J. Nuovo; Jianhua Yu; Michael A. Caligiuri
Considerable functional heterogeneity within human natural killer (NK) cells has been revealed through the characterization of distinct NK-cell subsets. Accordingly, a small subset of CD56(+)NKp44(+)NK cells, termed NK-22 cells, was recently described within secondary lymphoid tissue (SLT) as IL-22(-) when resting, with a minor fraction of this population becoming IL-22(+) when activated. Here we discover that the vast majority of stage 3 immature NK (iNK) cells in SLT constitutively and selectively express IL-22, a T(H)17 cytokine important for mucosal immunity, whereas earlier and later stages of NK developmental intermediates do not express IL-22. These iNK cells have a surface phenotype of CD34(-)CD117(+)CD161(+)CD94(-), largely lack expression of NKp44 and CD56, and do not produce IFN-gamma or possess cytolytic activity. In summary, stage 3 iNK cells are highly enriched for IL-22 and IL-26 messenger RNA, and IL-22 protein production, but do not express IL-17A or IL-17F.
Journal of Clinical Investigation | 2006
Adrienne M. Dorrance; Shujun Liu; Weifeng Yuan; Brian Becknell; Kristy J. Arnoczky; Martin Guimond; Matthew P. Strout; Lan Feng; Tatsuya Nakamura; Li Yu; Laura J. Rush; Michael Weinstein; Gustavo Leone; Lizhao Wu; Amy K. Ferketich; Susan P. Whitman; Guido Marcucci; Michael A. Caligiuri
We previously identified a rearrangement of mixed-lineage leukemia (MLL) gene (also known as ALL-1, HRX, and HTRX1), consisting of an in-frame partial tandem duplication (PTD) of exons 5 through 11 in the absence of a partner gene, occurring in approximately 4%-7% of patients with acute myeloid leukemia (AML) and normal cytogenetics, and associated with a poor prognosis. The mechanism by which the MLL PTD contributes to aberrant hematopoiesis and/or leukemia is unknown. To examine this, we generated a mouse knockin model in which exons 5 through 11 of the murine Mll gene were targeted to intron 4 of the endogenous Mll locus. Mll(PTD/WT) mice exhibit an alteration in the boundaries of normal homeobox (Hox) gene expression during embryogenesis, resulting in axial skeletal defects and increased numbers of hematopoietic progenitor cells. Mll(PTD/WT) mice overexpress Hoxa7, Hoxa9, and Hoxa10 in spleen, BM, and blood. An increase in histone H3/H4 acetylation and histone H3 lysine 4 (Lys4) methylation within the Hoxa7 and Hoxa9 promoters provides an epigenetic mechanism by which this overexpression occurs in vivo and an etiologic role for MLL PTD gain of function in the genesis of AML.
Journal of Clinical Investigation | 2003
Gregory B. Lesinski; Mirela Anghelina; Jason M. Zimmerer; Timothy Bakalakos; Brian D. Badgwell; Robin Parihar; Yan Hu; Brian Becknell; Gerard J. Abood; Abhik Ray Chaudhury; Cynthia M. Magro; Joan E. Durbin; William E. Carson
IFN-alpha activates the signal transducer and activator of transcription (STAT) family of proteins; however, it is unknown whether IFN-alpha exerts its antitumor actions primarily through a direct effect on malignant cells or by stimulating the immune system. To investigate the contribution of STAT1 signaling within the tumor, we generated a STAT1-deficient melanoma cell line, AGS-1. We reconstituted STAT1 into AGS-1 cells by retroviral gene transfer. The resulting cell line (AGS-1STAT1) showed normal regulation of IFN-alpha-stimulated genes (e.g., H2k, ISG-54) as compared with AGS-1 cells infected with the empty vector (AGS-1MSCV). However, mice challenged with the AGS-1, AGS-1STAT1, and AGS-1MSCV cell lines exhibited nearly identical survival in response to IFN-alpha treatment, indicating that restored STAT1 signaling within the tumor did not augment the antitumor activity of IFN-alpha. In contrast, STAT1-/- mice could not utilize exogenous IFN-alpha to inhibit the growth of STAT1+/+ melanoma cells in either an intraperitoneal tumor model or in the adjuvant setting. The survival of tumor-bearing STAT1-/- mice was identical regardless of treatment (IFN-alpha or PBS). Additional cell depletion studies demonstrated that NK cells mediated the antitumor effects of IFN-alpha. Thus, STAT1-mediated gene regulation within immune effectors was necessary for mediating the antitumor effects of IFN-alpha in this experimental system.
Journal of Immunology | 2007
Jason M. Zimmerer; Gregory B. Lesinski; Sri Vidya Kondadasula; Volodymyr Karpa; Amy Lehman; Abhik Ray-Chaudhury; Brian Becknell; William E. Carson
Proteins belonging to the suppressors of cytokine signaling (SOCS) family have been shown to regulate cytokine signal transduction in various cell types but their role in modulating the response of immune cells to IFN-α has not been fully explored. We hypothesized that SOCS proteins would inhibit the antitumor activity of IFN-α-stimulated immune cells. Transcripts for SOCS1, SOCS2, SOCS3, and cytokine-inducible Src homology 2-containing protein were identified in total human PBMC (PBMCs, NK cells, and T cells) within 1–2 h of stimulation with IFN-α (103–105 U/ml). Immunoblot analysis confirmed the expression of these factors at the protein level. Transcripts for SOCS proteins were rapidly but variably induced in PBMCs from patients with metastatic melanoma following the i.v. administration of IFN-α-2b (20 million units/m2). Overexpression of SOCS1 and SOCS3, but not SOCS2, in the Jurkat T cell line inhibited IFN-α-induced phosphorylated STAT1 and the transcription of IFN-stimulated genes. Conversely, small inhibitory RNA-mediated down-regulation of SOCS1 and SOCS3 in Jurkat cells and normal T cells enhanced the transcriptional response to IFN-α. Loss of SOCS1 or SOCS3 in murine immune effectors was associated with enhanced IFN-induced phosphorylated STAT1, transcription of IFN-stimulated genes, and antitumor activity. Of note, IFN-α treatment eliminated melanoma tumors in 70% of SOCS1-deficient mice, whereas IFN-treated SOCS-competent mice all died. The antitumor effects of IFN-α in tumor-bearing SOCS1-deficient mice were markedly inhibited following depletion of CD8+ T cells. These results indicate that the antitumor response of immune effector cells to exogenous IFN-α is regulated by SOCS proteins.