Brian Burlinson
Huntingdon Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian Burlinson.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011
Andreas Rothfuss; Masamitu Honma; Andreas Czich; Marilyn J. Aardema; Brian Burlinson; Sheila M. Galloway; Shuichi Hamada; David Kirkland; Robert H. Heflich; Jonathan Howe; Madoka Nakajima; Mike O’Donovan; Ulla Plappert-Helbig; Catherine C. Priestley; Leslie Recio; Maik Schuler; Yoshifumi Uno; Hans-Jörg Martus
A working group convened at the 2009 5th IWGT to discuss possibilities for improving in vivo genotoxicity assessment by investigating possible links to standard toxicity testing. The working group considered: (1) combination of acute micronucleus (MN) and Comet assays into a single study, (2) integration of MN assays into repeated-dose toxicity (RDT) studies, (3) integration of Comet assays into RDT studies, and (4) requirements for the top dose when integrating genotoxicity measurements into RDT studies. The working group reviewed current requirements for in vivo genotoxicity testing of different chemical product classes and identified opportunities for combination and integration of genotoxicity endpoints for each class. The combination of the acute in vivo MN and Comet assays was considered by the working group to represent a technically feasible and scientifically acceptable alternative to conducting independent assays. Two combination protocols, consisting of either a 3- or a 4-treament protocol, were considered equally acceptable. As the integration of MN assays into RDT studies had already been discussed in detail in previous IWGT meetings, the working group focussed on factors that could affect the results of the integrated MN assay, such as the possible effects of repeated bleeding and the need for early harvests. The working group reached the consensus that repeated bleeding at reasonable volumes is not a critical confounding factor for the MN assay in rats older than 9 weeks of age and that rats bled for toxicokinetic investigations or for other routine toxicological purposes can be used for MN analysis. The working group considered the available data as insufficient to conclude that there is a need for an early sampling point for MN analysis in RDT studies, in addition to the routine determination at terminal sacrifice. Specific scenarios were identified where an additional early sampling can have advantages, e.g., for compounds that exert toxic effects on hematopoiesis, including some aneugens. For the integration of Comet assays into RDT studies, the working group reached the consensus that, based upon the limited amount of data available, integration is scientifically acceptable and that the liver Comet assay can complement the MN assay in blood or bone marrow in detecting in vivo genotoxins. Practical issues need to be considered when conducting an integrated Comet assay study. Freezing of tissue samples for later Comet assay analysis could alleviate logistical problems. However, the working group concluded that freezing of tissue samples can presently not be recommended for routine use, although it was noted that results from some laboratories look promising. Another discussion topic centred around the question as to whether tissue toxicity, which is more likely observed in RDT than in acute toxicity studies, would affect the results of the Comet assay. Based on the available data from in vivo studies, the working group concluded that there are no clear examples where cytotoxicity, by itself, generates increases or decreases in DNA migration. The working group identified the need for a refined guidance on the use and interpretation of cytotoxicity methods used in the Comet assay, as the different methods used generally lead to inconsistent conclusions. Since top doses in RDT studies often are limited by toxicity that occurs only after several doses, the working group discussed whether the sensitivity of integrated genotoxicity studies is reduced under these circumstances. For compounds for which in vitro genotoxicity studies yielded negative results, the working group reached the consensus that integration of in vivo genotoxicity endpoints (typically the MN assay) into RDT studies is generally acceptable. If in vitro genotoxicity results are unavailable or positive, consensus was reached that the maximum tolerated dose (MTD) is acceptable as the top dose in RDT studies in many cases, such as when the RDT study MTD or exposure is close (50% or greater) to an acute study MTD or exposure. Finally, the group agreed that exceptions to this general rule might be acceptable, for example when human exposure is lower than the preclinical exposure by a large margin.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015
Yoshifumi Uno; Hajime Kojima; Takashi Omori; Raffaella Corvi; Masamistu Honma; Leonard M. Schechtman; Raymond R. Tice; Brian Burlinson; Patricia A. Escobar; Andrew R. Kraynak; Yuzuki Nakagawa; Madoka Nakajima; Kamala Pant; Norihide Asano; David P. Lovell; Takeshi Morita; Yasuo Ohno; Makoto Hayashi
The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this exercise was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The study protocol was optimized in the pre-validation studies, and then the definitive (4th phase) validation study was conducted in two steps. In the 1st step, assay reproducibility was confirmed among laboratories using four coded reference chemicals and the positive control ethyl methanesulfonate. In the 2nd step, the predictive capability was investigated using 40 coded chemicals with known genotoxic and carcinogenic activity (i.e., genotoxic carcinogens, genotoxic non-carcinogens, non-genotoxic carcinogens, and non-genotoxic non-carcinogens). Based on the results obtained, the in vivo comet assay is concluded to be highly capable of identifying genotoxic chemicals and therefore can serve as a reliable predictor of rodent carcinogenicity.
Methods of Molecular Biology | 2012
Brian Burlinson
The strategy for testing for genotoxicity covers three main areas, namely gene mutation, chromosome aberration or breakage (clastogenicity), and chromosome loss or gain (aneuploidy). The current generalized strategy consists of assays capable of detecting all of these endpoints using in vitro assays such as the Ames test for detecting gene mutations in bacteria, the human peripheral lymphocyte chromosome aberration (CA) test for detecting clastogenicity, and the in vitro micronucleus test for clastogenicity and aneuploidy. The primary in vivo assay, and generally the only in vivo assay required, is the in vivo rodent bone marrow micronucleus assay. However, there are instances when these assays alone are inadequate and further testing is required, especially in vivo. Historically, the preferred second assay has been the rodent liver unscheduled DNA synthesis assay but recently this has been superseded by the rodent single cell gel electrophoresis or Comet assay. This assay has numerous advantages especially in vivo, where virtually any tissue can be examined. The status of the in vitro comet assay in regulatory testing is much less clear although a preliminary review of data from the assay has shown it to be more specific than other in vitro genotoxicity tests and less prone to false positives.Detailed here are general protocols for both the in vitro and in vivo comet assays which will form the basis of the pending OECD guideline for the assay.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015
Günter Speit; Hajime Kojima; Brian Burlinson; Andrew R. Collins; Peter Kasper; Ulla Plappert-Helbig; Yoshifumi Uno; Marie Vasquez; Carol Beevers; Marlies De Boeck; Patricia A. Escobar; Sachiko Kitamoto; Kamala Pant; Stefan Pfuhler; Jin Tanaka; Dan D. Levy
As a part of the 6th IWGT, an expert working group on the comet assay evaluated critical topics related to the use of the in vivo comet assay in regulatory genotoxicity testing. The areas covered were: identification of the domain of applicability and regulatory acceptance, identification of critical parameters of the protocol and attempts to standardize the assay, experience with combination and integration with other in vivo studies, demonstration of laboratory proficiency, sensitivity and power of the protocol used, use of different tissues, freezing of samples, and choice of appropriate measures of cytotoxicity. The standard protocol detects various types of DNA lesions but it does not detect all types of DNA damage. Modifications of the standard protocol may be used to detect additional types of specific DNA damage (e.g., cross-links, bulky adducts, oxidized bases). In addition, the working group identified critical parameters that should be carefully controlled and described in detail in every published study protocol. In vivo comet assay results are more reliable if they were obtained in laboratories that have demonstrated proficiency. This includes demonstration of adequate response to vehicle controls and an adequate response to a positive control for each tissue being examined. There was a general agreement that freezing of samples is an option but more data are needed in order to establish generally accepted protocols. With regard to tissue toxicity, the working group concluded that cytotoxicity could be a confounder of comet results. It is recommended to look at multiple parameters such as histopathological observations, organ-specific clinical chemistry as well as indicators of tissue inflammation to decide whether compound-specific toxicity might influence the result. The expert working group concluded that the alkaline in vivo comet assay is a mature test for the evaluation of genotoxicity and can be recommended to regulatory agencies for use.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015
William Barfield; Brian Burlinson
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of in vivo rat alkaline comet assay, we examined p-Chloroaniline, t-butylhydroquinone, and methyl carbamate. All test materials and controls were dosed orally by gavage. p-Chloroaniline produced a statistically significant increase in the mean and median % tail intensity which was also outside of the historical control range in the liver and stomach of Sprague-Dawley rats. t-Butylhydroquinone caused a statistically significant increase in the mean % tail intensity in the liver and stomach and a statistically significant increase in the median % tail intensity in the liver; however, these results are not considered to be biologically significant as all values obtained fell within the current vehicle historical control range and within the negative control range for mean % tail intensity set by the Validation Management Team (VMT) as a requirement for an acceptable assay. Methyl carbamate did not induce a statistically significant change in the mean or median % tail intensity in either liver or stomach.
Mutagenesis | 2013
Mike O’Donovan; Brian Burlinson
The comet assay can be applied to virtually any tissue and it has been noted that it can be particularly useful in evaluating directly acting genotoxins at their initial site of action. Consequently, it has become relatively common practice to use the stomach comet assay after oral administration to test chemicals that have given positive in vitro genotoxicity results in the absence of metabolic activation. However, to test nontoxic substances up to the limit doses of 1000/2000mg/kg formulations approaching molar concentrations must be used resulting in the stomach mucosa being exposed to excessively high levels. Evidence is beginning to accumulate which shows positive results that do not indicate that potential carcinogenicity may be associated with such high levels of exposure. For pharmaceutical agents, toxicokinetic data are usually available to demonstrate systemic exposure after oral administration. In such cases, it is proposed that exposure of any tissue to levels of the drug substance greater than those that have given positive in vitro results in the absence of metabolic activation is sufficient. However, it is recognised that toxicokinetic data are not available for all chemicals and there are also agents designed not to leave the gastrointestinal tract (GIT). Where it is necessary to examine the GIT, the dose levels selected for examination should cover the likely or intended exposure levels, not necessarily to achieve the maximum tolerated or limit doses, even if the higher doses are required for genotoxicity endpoints in other tissues to be valid. There are usually two or three dose levels in in vivo genotoxicity studies, so when both systemically exposed tissues and the stomach are being examined, it would be possible to use one of the lower doses for the latter without increasing the numbers of animals required. It is important to consider the local concentrations achieved in the stomach or other parts of the GIT in order to avoid the comet assay generating artefactual positive results and it is hoped this will be addressed in the imminent Organisation for Economic Co-operation and Development guideline.
Mutagenesis | 2003
A. Hartmann; E. Agurell; C. Beevers; S. Brendler-Schwaab; Brian Burlinson; Philip Clay; Andrew R. Collins; A. Smith; G. Speit; Véronique Thybaud; Raymond R. Tice
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2007
Brian Burlinson; Raymond R. Tice; Günter Speit; Eva Agurell; Susanne Brendler-Schwaab; Andrew R. Collins; Patricia Escobar; Masamitsu Honma; Tirukalikundram S. Kumaravel; Madoka Nakajima; Yu F. Sasaki; Véronique Thybaud; Yoshifumi Uno; Marie Vasquez; Andreas Hartmann
Environmental and Molecular Mutagenesis | 2006
Martha M. Moore; Masamitsu Honma; Julie Clements; George Bolcsfoldi; Brian Burlinson; Maria Cifone; Jane J. Clarke; Robert R. Delongchamp; Robert Durward; Michael D. Fellows; B. Bhaskar Gollapudi; Saimei Hou; Peter Jenkinson; Melvin Lloyd; Jenness B. Majeska; Brian Myhr; Michael R. O'Donovan; Takashi Omori; Colin Riach; Richard H.C. San; Leon F. Stankowski; Ajit K. Thakur; Freddy Van Goethem; Shinobu Wakuri; Isao Yoshimura
Mutagenesis | 2002
Neal F. Cariello; John D. Wilson; Ben H. Britt; David J. Wedd; Brian Burlinson; Vijay K. Gombar