Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian C. Balmer is active.

Publication


Featured researches published by Brian C. Balmer.


Environmental Science & Technology | 2014

Health of Common Bottlenose Dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, Following the Deepwater Horizon Oil Spill

Lori H. Schwacke; Cynthia R. Smith; Forrest I. Townsend; Randall S. Wells; Leslie B. Hart; Brian C. Balmer; Tracy K. Collier; Sylvain De Guise; Michael M. Fry; Louis J. Guillette; Stephen V. Lamb; Suzanne M. Lane; Wayne E. McFee; Ned J. Place; Mandy C. Tumlin; Gina M. Ylitalo; Eric S. Zolman; Teresa K. Rowles

The oil spill resulting from the explosion of the Deepwater Horizon drilling platform initiated immediate concern for marine wildlife, including common bottlenose dolphins in sensitive coastal habitats. To evaluate potential sublethal effects on dolphins, health assessments were conducted in Barataria Bay, Louisiana, an area that received heavy and prolonged oiling, and in a reference site, Sarasota Bay, Florida, where oil was not observed. Dolphins were temporarily captured, received a veterinary examination, and were then released. Dolphins sampled in Barataria Bay showed evidence of hypoadrenocorticism, consistent with adrenal toxicity as previously reported for laboratory mammals exposed to oil. Barataria Bay dolphins were 5 times more likely to have moderate-severe lung disease, generally characterized by significant alveolar interstitial syndrome, lung masses, and pulmonary consolidation. Of 29 dolphins evaluated from Barataria Bay, 48% were given a guarded or worse prognosis, and 17% were considered poor or grave, indicating that they were not expected to survive. Disease conditions in Barataria Bay dolphins were significantly greater in prevalence and severity than those in Sarasota Bay dolphins, as well as those previously reported in other wild dolphin populations. Many disease conditions observed in Barataria Bay dolphins are uncommon but consistent with petroleum hydrocarbon exposure and toxicity.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Anaemia, hypothyroidism and immune suppression associated with polychlorinated biphenyl exposure in bottlenose dolphins (Tursiops truncatus)

Lori H. Schwacke; Eric S. Zolman; Brian C. Balmer; Sylvain De Guise; R. Clay George; Jennifer Hoguet; Aleta A. Hohn; John R. Kucklick; Steve Lamb; Milton Levin; Jenny Litz; Wayne E. McFee; Ned J. Place; Forrest I. Townsend; Randall S. Wells; Teresa K. Rowles

Polychlorinated biphenyls (PCBs), persistent chemicals widely used for industrial purposes, have been banned in most parts of the world for decades. Owing to their bioaccumulative nature, PCBs are still found in high concentrations in marine mammals, particularly those that occupy upper trophic positions. While PCB-related health effects have been well-documented in some mammals, studies among dolphins and whales are limited. We conducted health evaluations of bottlenose dolphins (Tursiops truncatus) near a site on the Georgia, United States coast heavily contaminated by Aroclor 1268, an uncommon PCB mixture primarily comprised of octa- through deca-chlorobiphenyl congeners. A high proportion (26%) of sampled dolphins suffered anaemia, a finding previously reported from primate laboratory studies using high doses of a more common PCB mixture, Aroclor 1254. In addition, the dolphins showed reduced thyroid hormone levels and total thyroxine, free thyroxine and triiodothyronine negatively correlated with PCB concentration measured in blubber (p = 0.039, < 0.001, 0.009, respectively). Similarly, T-lymphocyte proliferation and indices of innate immunity decreased with blubber PCB concentration, suggesting an increased susceptibility to infectious disease. Other persistent contaminants such as DDT which could potentially confound results were similar in the Georgia dolphins when compared with previously sampled reference sites, and therefore probably did not contribute to the observed correlations. Our results clearly demonstrate that dolphins are vulnerable to PCB-related toxic effects, at least partially mediated through the endocrine system. The severity of the effects suggests that the PCB mixture to which the Georgia dolphins were exposed has substantial toxic potential and further studies are warranted to elucidate mechanisms and potential impacts on other top-level predators, including humans, who regularly consume fish from the same marine waters.


Science of The Total Environment | 2010

Life history as a source of variation for persistent organic pollutant (POP) patterns in a community of common bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay, FL

Jennifer Yordy; Randall S. Wells; Brian C. Balmer; Lori H. Schwacke; Teri Rowles; John R. Kucklick

As apex predators within coastal ecosystems, bottlenose dolphins (Tursiops truncatus) are prone to accumulate complex mixtures of persistent organic pollutants (POPs). While substantial variations in POP patterns have been previously observed in dolphin populations separated across regional- and fine-scale geographic ranges, less is known regarding the factors influencing contaminant patterns within localized populations. To assess the variation of POP mixtures that occurs among individuals of a population, polychlorinated biphenyl (PCB), organochlorine pesticide (OCP) and polybrominated diphenyl ether (PBDE) concentrations were measured in blubber and milk of bottlenose dolphins resident to Sarasota Bay, FL, and principal components analysis (PCA) was used to explain mixture variations in relation to age, sex and reproductive maturity. PCA demonstrated significant variations in contaminant mixtures within the resident dolphin community. POP patterns in juvenile dolphins resembled patterns in milk, the primary diet source, and were dominated by lower-halogenated PCBs and PBDEs. A significant correlation between principal component 2 (PC2) and age in male dolphins indicated that juvenile contaminant patterns gradually shifted away from the milk-like pattern over time. Metabolically-refractory PCBs significantly increased with age in male dolphins, whereas PCBs subject to cytochrome p450 1A1 metabolism did not, suggesting that changes in male POP patterns likely resulted from the selective accumulation of persistent POP congeners. Changes to POP patterns were gradual for juvenile females, but changed dramatically at reproductive maturity and gradually shifted back towards pre-parturient profiles thereafter. Congener-specific blubber/milk partition coefficients indicated that lower-halogenated POPs were selectively offloaded into milk and changes in adult female contaminant profiles likely resulted from the offloading of these compounds during the first reproductive event and their gradual re-accumulation thereafter. Overall, these results indicate that significant variations in contaminant mixtures can exist within localized populations of bottlenose dolphins, with life history factors such as age and sex driving individual differences.


Environmental Science & Technology | 2011

Bottlenose dolphins as indicators of persistent organic pollutants in the western North Atlantic Ocean and northern Gulf of Mexico.

John R. Kucklick; Lori H. Schwacke; Randy Wells; Aleta A. Hohn; Aurore Guichard; Jennifer Yordy; Larry J. Hansen; Eric S. Zolman; Rachel M. Wilson; Jenny Litz; Doug Nowacek; Teri Rowles; Rebecca S. Pugh; Brian C. Balmer; Carrie Sinclair; Patricia E. Rosel

Persistent organic pollutants (POPs) including legacy POPs (PCBs, chlordanes, mirex, DDTs, HCB, and dieldrin) and polybrominated diphenyl ether (PBDE) flame retardants were determined in 300 blubber biopsy samples from coastal and near shore/estuarine male bottlenose dolphins (Tursiops truncatus) sampled along the U.S. East and Gulf of Mexico coasts and Bermuda. Samples were from 14 locations including urban and rural estuaries and near a Superfund site (Brunswick, Georgia) contaminated with the PCB formulation Aroclor 1268. All classes of legacy POPs in estuarine stocks varied significantly (p < 0.05) among sampling locations. POP profiles in blubber varied by location with the most characteristic profile observed in bottlenose dolphins sampled near the Brunswick and Sapelo estuaries along the Georgia coast which differed significantly (p < 0.001) from other sites. Here and in Sapelo, PCB congeners from Aroclor 1268 dominated indicating widespread food web contamination by this PCB mixture. PCB 153, which is associated with non-Aroclor 1268 PCB formulations, correlated significantly to human population indicating contamination from a general urban PCB source. Factors influencing regional differences of other POPs were less clear and warrant further study. This work puts into geographical context POP contamination in dolphins to help prioritize efforts examining health effects from POP exposure in bottlenose dolphins.


Environmental Science & Technology | 2010

Partitioning of persistent organic pollutants between blubber and blood of wild bottlenose dolphins: implications for biomonitoring and health.

Jennifer Yordy; Randall S. Wells; Brian C. Balmer; Lori H. Schwacke; Teri Rowles; John R. Kucklick

Biomonitoring surveys of wild cetaceans commonly utilize blubber as a means to assess exposure to persistent organic pollutants (POPs), but the relationship between concentrations in blubber and those in blood, a better indicator of target organ exposure, is poorly understood. To define this relationship, matched blubber and plasma samples (n = 56) were collected from free-ranging bottlenose dolphins (Tursiops truncatus) and analyzed for 61 polychlorinated biphenyl (PCB) congeners, 5 polybrominated diphenyl ether (PBDE) congeners, and 13 organochlorine pesticides (OCPs). With the exception of PCB 209, lipid-normalized concentrations of the major POPs in blubber and plasma were positively and significantly correlated (R(2) = 0.828 to 0.976). Plasma concentrations, however, significantly increased with declining blubber lipid content, suggesting that as lipid is utilized, POPs are mobilized into blood. Compound- and homologue- specific blubber/blood partition coefficients also differed according to lipid content, suggesting POPs are selectively mobilized from blubber. Overall, these results suggest that with the regression parameters derived here, blubber may be used to estimate blood concentrations and vice versa. Additionally, the mobilization of lipid from blubber and concomitant increase in contaminants in blood suggests cetaceans with reduced blubber lipid may be at greater risk for contaminant-associated health effects.


Environmental Research | 2010

Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events

Lori H. Schwacke; Michael J. Twiner; Sylvain De Guise; Brian C. Balmer; Randall S. Wells; Forrest I. Townsend; David C. Rotstein; Rene A. Varela; Larry J. Hansen; Eric S. Zolman; Trevor R. Spradlin; Milton Levin; Heather Leibrecht; Zhihong Wang; Teresa K. Rowles

Bottlenose dolphins (Tursiops truncatus) inhabiting coastal waters in the northern Gulf of Mexico have been impacted by recurrent unusual mortality events over the past few decades. Several of these mortality events along the Florida panhandle have been tentatively attributed to poisoning from brevetoxin produced by the dinoflagellate Karenia brevis. While dolphins in other regions of the Florida coast are often exposed to K. brevis blooms, large-scale dolphin mortality events are relatively rare and the frequency and magnitude of die-offs along the Panhandle raise concern for the apparent vulnerability of dolphins in this region. We report results from dolphin health assessments conducted near St. Joseph Bay, Florida, an area impacted by 3 unusual die-offs within a 7-year time span. An eosinophilia syndrome, manifested as an elevated blood eosinophil count without obvious cause, was observed in 23% of sampled dolphins. Elevated eosinophil counts were associated with decreased T-lymphocyte proliferation and increased neutrophil phagocytosis. In addition, indication of chronic low-level exposure to another algal toxin, domoic acid produced by the diatom Pseudo-nitzschia spp., was determined. Previous studies of other marine mammal populations exposed recurrently to Pseudo-nitzschia blooms have suggested a possible link between the eosinophilia and domoic acid exposure. While the chronic eosinophilia syndrome could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear. Nonetheless, the unusual immunological findings and concurrent evidence of domoic acid exposure in this sentinel marine species suggest a need for further investigation to elucidate potential links between chronic, low-level exposure to algal toxins and immune health.


PLOS ONE | 2011

Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

Michael J. Twiner; Spencer E. Fire; Lori H. Schwacke; Leigh Davidson; Zhihong Wang; Steve L. Morton; Stephen Roth; Brian C. Balmer; Teresa K. Rowles; Randall S. Wells

Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.


Frontiers in Endocrinology | 2013

Blood-based indicators of insulin resistance and metabolic syndrome in bottlenose dolphins (Tursiops truncatus)

Stephanie Venn-Watson; Cynthia R. Smith; Sacha Stevenson; Celeste Parry; Risa Daniels; Eric D. Jensen; Veronica Cendejas; Brian C. Balmer; Michael G. Janech; Benjamin A. Neely; Randall S. Wells

Similar to people with metabolic syndrome, bottlenose dolphins (Tursiops truncatus) can have a sustained postprandial hyperglycemia and hyperinsulinemia, dyslipidemia, and fatty liver disease. A panel of potential postprandial blood-based indicators of insulin resistance and metabolic syndrome were compared among 34 managed collection dolphins in San Diego Bay, CA, USA (Group A) and 16 wild, free-ranging dolphins in Sarasota Bay, FL, USA (Group B). Compared to Group B, Group A had higher insulin (2.1 ± 2.5 and 13 ± 13 μIU/ml), glucose (87 ± 19 and 108 ± 12 mg/dl), and triglycerides (75 ± 28 and 128 ± 45 mg/dl) as well as higher cholesterol (total, high-density lipoprotein cholesterol, and very low density lipoprotein cholesterol), iron, transferrin saturation, gamma-glutamyl transpeptidase (GGT), alanine transaminase, and uric acid. Group A had higher percent unmodified adiponectin. While Group A dolphins were older, the same blood-based differences remained when controlling for age. There were no differences in body mass index (BMI) between the groups, and comparisons between Group B and Group A dolphins have consistently demonstrated lower stress hormones levels in Group A. Group A dolphins with high insulin (greater than 14 μIU/ml) had higher glucose, iron, GGT, and BMI compared to Group A dolphins with lower insulin. These findings support that some dolphin groups may be more susceptible to insulin resistance compared to others, and primary risk factors are not likely age, BMI, or stress. Lower high-molecular weight adiponectin has been identified as an independent risk factor for type 2 diabetes in humans and may be a target for preventing insulin resistance in dolphins. Future investigations with these two dolphin populations, including dietary and feeding differences, may provide valuable insight for preventing and treating insulin resistance in humans.


Environmental Toxicology and Chemistry | 2006

Perfluoroalkyl compounds in relation to life‐history and reproductive parameters in bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, Florida, USA

Magali Houde; Brian C. Balmer; S.H. Brandsma; Randall S. Wells; Teri Rowles; Keith R. Solomon; Derek C G Muir

Perfluoroalkyl compounds (PFCs) were determined in plasma, milk, and urine of free-ranging bottlenose dolphins (Tursiops truncatus) from Sarasota Bay (FL, USA) during three winter and two summer capture-and-release programs (2002-2005). Plasma and urine samples were extracted using an ion-pairing method. Perfluoroalkyl compounds were extracted from milk samples using acetonitrile, and extracts were cleaned with graphitized nonporous carbon. All extracts were analyzed by high-performance liquid chromatography-tandem mass spectrometry. Mean seasonal sum of PFCs (sigma PFCs) detected in dolphin plasma ranged from 530 to 927 ng/g wet weight. No significant differences (p > 0.05) were found in concentrations between seasons, suggesting a constant exposure to PFCs. Overall, blubber thickness of dolphins did not correlate with PFC concentrations in plasma, suggesting an absence of PFC sequestration in blubber. Sexually immature calves (age, <10 years; mean sigma PFCs, 1,410 +/- 780 ng/ g wet wt) were significantly more contaminated (p < 0.001) than their mothers (mean sigma PFCs, 366 +/- 351 ng/g wet wt). The reproductive history of females had a significant role in the burden of PFC contamination; PFC concentrations in nulliparous females (females that have not been observed with calves) were significantly greater than those detected in uniparous females (females that have been observed with one calf), suggesting an off-loading of PFCs during or after parturition. To investigate this hypothesis, PFCs were analyzed in milk samples (n=10; mean sigma PFCs, 134 +/- 76.1 ng/g wet wt), confirming a maternal transfer of PFCs through lactation in dolphins. Results from the present study showed that young and developing bottlenose dolphins are highly exposed to PFCs. These chemicals also were detected in urine (mean sigma PFCs, 26.6 +/- 79 ng/g wet wt), indicating that the urinary system is an important pathway of PFC depuration in dolphins.


PLOS ONE | 2012

Skin Lesions on Common Bottlenose Dolphins (Tursiops truncatus) from Three Sites in the Northwest Atlantic, USA

Leslie B. Hart; Dave S. Rotstein; Randall S. Wells; Jason Allen; Aaron Barleycorn; Brian C. Balmer; Suzanne M. Lane; Todd Speakman; Eric S. Zolman; Megan Stolen; Wayne E. McFee; Tracey Goldstein; Teri Rowles; Lori H. Schwacke

Skin disease occurs frequently in many cetacean species across the globe; methods to categorize lesions have relied on photo-identification (photo-id), stranding, and by-catch data. The current study used photo-id data from four sampling months during 2009 to estimate skin lesion prevalence and type occurring on bottlenose dolphins (Tursiops truncatus) from three sites along the southeast United States coast [Sarasota Bay, FL (SSB); near Brunswick and Sapelo Island, GA (BSG); and near Charleston, SC (CHS)]. The prevalence of lesions was highest among BSG dolphins (P = 0.587) and lowest in SSB (P = 0.380), and the overall prevalence was significantly different among all sites (p<0.0167). Logistic regression modeling revealed a significant reduction in the odds of lesion occurrence for increasing water temperatures (OR = 0.92; 95%CI:0.906–0.938) and a significantly increased odds of lesion occurrence for BSG dolphins (OR = 1.39; 95%CI:1.203–1.614). Approximately one-third of the lesioned dolphins from each site presented with multiple types, and population differences in lesion type occurrence were observed (p<0.05). Lesions on stranded dolphins were sampled to determine the etiology of different lesion types, which included three visually distinct samples positive for herpesvirus. Although generally considered non-fatal, skin disease may be indicative of animal health or exposure to anthropogenic or environmental threats, and photo-id data provide an efficient and cost-effective approach to document the occurrence of skin lesions in free-ranging populations.

Collaboration


Dive into the Brian C. Balmer's collaboration.

Top Co-Authors

Avatar

Randall S. Wells

Chicago Zoological Society

View shared research outputs
Top Co-Authors

Avatar

Lori H. Schwacke

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Eric S. Zolman

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Teresa K. Rowles

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

John R. Kucklick

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Keith D. Mullin

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Teri Rowles

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Todd Speakman

Chicago Zoological Society

View shared research outputs
Top Co-Authors

Avatar

Carrie Sinclair

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Patricia E. Rosel

National Marine Fisheries Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge