Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian C. Rymond is active.

Publication


Featured researches published by Brian C. Rymond.


Molecular and Cellular Biology | 1992

PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels

S Blanton; A Srinivasan; Brian C. Rymond

An essential pre-mRNA splicing factor, the product of the PRP38 gene, has been genetically identified in a screen of temperature-sensitive mutants of Saccharomyces cerevisiae. Shifting temperature-sensitive prp38 cultures from 23 to 37 degrees C prevents the first cleavage-ligation event in the excision of introns from mRNA precursors. In vitro splicing inactivation and complementation studies suggest that the PRP38-encoded factor functions, at least in part, after stable splicing complex formation. The PRP38 locus contains a 726-bp open reading frame coding for an acidic 28-kDa polypeptide (PRP38). While PRP38 lacks obvious structural similarity to previously defined splicing factors, heat inactivation of PRP38, PRP19, or any of the known U6 (or U4/U6) small nuclear ribonucleoprotein-associating proteins (i.e., PRP3, PRP4, PRP6, and PRP24) leads to a common, unexpected consequence: intracellular U6 small nuclear RNA (snRNA) levels decrease as splicing activity is lost. Curiously, U4 snRNA, normally extensively base paired with U6 snRNA, persists in the virtual absence of U6 snRNA.


The EMBO Journal | 1998

Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation

Jian Xie; Kristopher Beickman; Elizabeth Otte; Brian C. Rymond

The elaborate and energy‐intensive spliceosome assembly pathway belies the seemingly simple chemistry of pre‐mRNA splicing. Prp38p was previously identified as a protein required in vivo and in vitro for the first pre‐mRNA cleavage reaction catalyzed by the spliceosome. Here we show that Prp38p is a unique component of the U4/U6.U5 tri‐small nuclear ribonucleoprotein (snRNP) particle and is necessary for an essential step late in spliceosome maturation. Without Prp38p activity spliceosomes form, but arrest in a catalytically impaired state. Functional spliceosomes shed U4 snRNA before 5′ splice‐site cleavage. In contrast, Prp38p‐defective spliceosomes retain U4 snRNA bound to its U6 snRNA base‐pairing partner. Prp38p is the first tri‐snRNP‐specific protein shown to be dispensable for assembly, but required for conformational changes which lead to catalytic activation of the spliceosome.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Inhibition of a spliceosome turnover pathway suppresses splicing defects

Shatakshi Pandit; Bert C. Lynn; Brian C. Rymond

Defects in assembly are suggested to signal the dissociation of faulty splicing complexes. A yeast genetic screen was performed to identify components of the putative discard pathway. Weak mutant alleles of SPP382 (also called NTR1) were found to suppress defects in two proteins required for spliceosome activation, Prp38p and Prp8p. Spp382p is shown necessary for cellular splicing, with premRNA and, for some alleles, excised intron, accumulating after inactivation. Like spp382-1, a mutant allele of AAR2 was identified in this suppressor screen. Like Spp382p, Aar2p has a reported role in spliceosome recycling and is found with Spp382p in a complex recovered with a mutant version of the spliceosomal core protein Prp8p. Possible insight into to the spp382 suppressor phenotype is provided by the observation that defective splicing complexes lacking the 5′ exon cleavage intermediate are recovered by a tandem affinity purification-tagged Spp382 derivative. Stringent proteomic and two-hybrid analyses show that Spp382p also interacts with Cwc23p, a DNA J-like protein present in the spliceosome and copurified with the Prp43p DExD/H-box ATPase. Spp382p binds Prp43p and Prp43p requires Spp382p for intron release from the spliceosome. Consistent with a related function in the removal of defective complexes, three prp43 mutants are also shown to suppress splicing defects, with efficiencies inversely proportionate to the measured ATPase activities. These and related genetic data support the existence of a Spp382p-dependent turnover pathway acting on defective spliceosomes.


Molecular and Cellular Biology | 1995

Structurally Related but Functionally Distinct Yeast Sm D Core Small Nuclear Ribonucleoprotein Particle Proteins

Jagoree Roy; Binhai Zheng; Brian C. Rymond; John L. Woolford

Spliceosome assembly during pre-mRNA splicing requires the correct positioning of the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) on the precursor mRNA. The structure and integrity of these snRNPs are maintained in part by the association of the snRNAs with core snRNP (Sm) proteins. The Sm proteins also play a pivotal role in metazoan snRNP biogenesis. We have characterized a Saccharomyces cerevisiae gene, SMD3, that encodes the core snRNP protein Smd3. The Smd3 protein is required for pre-mRNA splicing in vivo. Depletion of this protein from yeast cells affects the levels of U snRNAs and their cap modification, indicating that Smd3 is required for snRNP biogenesis. Smd3 is structurally and functionally distinct from the previously described yeast core polypeptide Smd1. Although Smd3 and Smd1 are both associated with the spliceosomal snRNPs, overexpression of one cannot compensate for the loss of the other. Thus, these two proteins have distinct functions. A pool of Smd3 exists in the yeast cytoplasm. This is consistent with the possibility that snRNP assembly in S. cerevisiae, as in metazoans, is initiated in the cytoplasm from a pool of RNA-free core snRNP protein complexes.


Molecular and Cellular Biology | 1998

Yeast Pre-mRNA Splicing Requires a Pair of U1 snRNP-Associated Tetratricopeptide Repeat Proteins

Mitch R. McLean; Brian C. Rymond

ABSTRACT The U1 snRNP functions to nucleate spliceosome assembly on newly transcribed pre-mRNA. Saccharomyces cerevisiae is unusual among eukaryotes in the greatly extended length of its U1 snRNA and the apparent increased polypeptide complexity of the corresponding U1 snRNP. In this paper, we report the identification of a novel U1 snRNP protein, Prp42p, with unexpected properties. Prp42p was identified by its surprising structural similarity to the essential U1 snRNP protein, Prp39p. Both Prp39p and Prp42p possess multiple copies of a variant tetratricopeptide repeat, an element implicated in a wide range of protein assembly events. Yeast strains depleted of Prp42p by transcriptional repression of a GAL1::PRP42fusion gene arrest for splicing prior to pre-mRNA 5′ splice site cleavage. Prp42p was not observed in a recent biochemical analysis of purified U1 snRNPs from S. cerevisiae (28). Nevertheless, antibodies directed against an epitope-tagged version of Prp42p specifically precipitate U1 snRNA from yeast extracts. Furthermore, Prp42p is required for U1 snRNP biogenesis, because yeast strains depleted of Prp42p formed incomplete U1 snRNPs that failed to produce stable complexes with pre-mRNA in vitro. The evidence shows that Prp39p and Prp42p are both required to configure the atypical yeast U1 snRNP into a structure compatible with its evolutionarily conserved role in pre-mRNA splicing.


Molecular and Cellular Biology | 2005

Interactions of the Yeast SF3b Splicing Factor

Qiang Wang; Jin He; Bert C. Lynn; Brian C. Rymond

ABSTRACT The U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here proteomic and genetic studies identify Rcp10p as p10 and show that it contributes to SF3b stability and is necessary for normal cellular Cus1p accumulation and for U2 snRNP recruitment in splicing. Remarkably, only the final 53 amino acids of Rcp10p are essential. p17 is shown to be composed of two accessory splicing factors, Bud31p and Ist3p, the latter of which independently associates with the RES complex implicated in the nuclear pre-mRNA retention. A directed two-hybrid screen reveals a network of prospective interactions that includes previously unreported intra-SF3b contacts and SF3b interactions with the RES subunit Bud13p, the Prp5p DExD/H-box protein, Mud2p, and the late-acting nineteen complex. These data establish the concordance of yeast and mammalian SF3b complexes, implicate accessory splicing factors in U2 snRNP function, and support SF3b contribution from early pre-mRNP recognition to late steps in splicing.


Nucleic Acids Research | 2008

A BBP–Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast

Qiang Wang; Li Zhang; Bert C. Lynn; Brian C. Rymond

The 3′ end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Bakers yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, affinity selection and mass spectrometry were used to show that rather than a U2AF65/U2AF35-like heterodimer, Mud2p forms a complex with BBP without a third (U2AF35-like) factor. Using mutants of MUD2 and BBP, we show that the BBP–Mud2p complex bridges partner-specific Prp39p, Mer1p, Clf1p and Smy2p two-hybrid interactions. In addition to inhibiting Mud2p association, the bbpΔ56 mutation impairs splicing, enhances pre-mRNA release from the nucleus, and similar to a mud2::KAN knockout, suppresses a lethal sub2::KAN mutation. Unexpectedly, rather than exacerbating bbpΔ56, the mud2::KAN mutation partially suppresses a pre-mRNA accumulation defect observed with bbpΔ56. We propose that a BBP–Mud2p heterodimer binds as a unit to the branchpoint in vivo and serves as a target for the Sub2p-DExD/H-box ATPase and for other splicing factors during spliceosome assembly. In addition, our results suggest the possibility that the Mud2p may enhance the turnover of pre-mRNA with impaired BBP-branchpoint association.


Biochimica et Biophysica Acta | 2002

Crooked neck is a component of the human spliceosome and implicated in the splicing process

Seyung Chung; Zhaolan Zhou; Kathleen A. Huddleston; Douglas A. Harrison; Robin Reed; Timothy A. Coleman; Brian C. Rymond

The Drosophila crooked neck (crn) gene is essential for embryogenesis and has been implicated in cell cycle progression and in pre-mRNA splicing although a direct role in either process has not been established. Here we report isolation of the human crooked neck homolog, HCRN, and provide evidence for its function in splicing. HCRN encodes an unusual protein composed largely of tetratricopeptide repeat (TPR) elements. The crooked neck protein co-localizes with the SR and Sm protein splicing factors in discrete subnuclear domains implicated in snRNP biogenesis. In vitro assembly experiments show that an 83 kDa hcrn isoform is stably recruited to splicing complexes coincident with the addition of the U4/U6.U5 tri-snRNP particle. Crooked neck activity appears essential as extracts depleted of hcrn fail to splice pre-mRNA. These and related data support the view that crooked neck is a phylogenetically conserved pre-mRNA splicing factor.


Nature Chemical Biology | 2007

Targeting the spliceosome

Brian C. Rymond

The U2 snRNP particle is an essential component of the eukaryotic pre-mRNA splicing apparatus, the spliceosome. Natural and semisynthetic inhibitors that bind the SF3b subunit of the U2 snRNP block splicing and prompt nuclear export of intron-bearing precursors, defining a new mode of action in anticancer drugs.


Molecular and Cellular Biology | 2003

Rds3p is required for stable U2 snRNP recruitment to the splicing apparatus.

Qiang Wang; Brian C. Rymond

ABSTRACT Rds3p is a well-conserved 12-kDa protein with five CxxC zinc fingers that has been implicated in the activation of certain drug transport genes and in the pre-mRNA splicing pathway. Here we show that Rds3p resides in the yeast spliceosome and is essential for splicing in vitro. Rds3p purified from yeast stably associates with at least five U2 snRNP proteins, Cus1p, Hsh49p, Hsh155p, Rse1p, and Ist3p/Snu17p, and with the Yra1p RNA export factor. A mutation upstream of the first Rds3p zinc finger causes the conditional release of the putative branchpoint nucleotide binding protein, Ist3p/Snu17p, and weakens Rse1p interaction with the Rds3p complex. The resultant U2 snRNP particle migrates exceptionally slowly in polyacrylamide gels, suggestive of a disorganized structure. U2 snRNPs depleted of Rds3p fail to form stable prespliceosomes, although U2 snRNA stability is not affected. Metabolic depletion of Yra1p blocks cell growth but not splicing, suggesting that Yra1p association with Rds3p relates to Yra1ps role in RNA trafficking. Together these data establish Rds3p as an essential component of the U2 snRNP SF3b complex and suggest a new link between the nuclear processes of pre-mRNA splicing and RNA export.

Collaboration


Dive into the Brian C. Rymond's collaboration.

Top Co-Authors

Avatar

Qiang Wang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca L. Seipelt

Middle Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Zhang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge