Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian C. Shonesy is active.

Publication


Featured researches published by Brian C. Shonesy.


Nature Neuroscience | 2013

Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation

Daniel J. Hermanson; Nolan D. Hartley; Joyonna Gamble-George; Naoko Brown; Brian C. Shonesy; Phillip J. Kingsley; Roger J. Colbran; Jeff Reese; Lawrence J. Marnett; Sachin Patel

Augmentation of endogenous cannabinoid (eCB) signaling represents an emerging approach to the treatment of affective disorders. Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid to form prostaglandins, but also inactivates eCBs in vitro. However, the viability of COX-2 as a therapeutic target for in vivo eCB augmentation has not been explored. Using medicinal chemistry and in vivo analytical and behavioral pharmacological approaches, we found that COX-2 is important for the regulation of eCB levels in vivo. We used a pharmacological strategy involving substrate-selective inhibition of COX-2 to augment eCB signaling without affecting related non-eCB lipids or prostaglandin synthesis. Behaviorally, substrate-selective inhibition of COX-2 reduced anxiety-like behaviors in mice via increased eCB signaling. Our data suggest a key role for COX-2 in the regulation of eCB signaling and indicate that substrate-selective pharmacology represents a viable approach for eCB augmentation with broad therapeutic potential.


Neurobiology of Aging | 2012

Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents

Brian C. Shonesy; Kariharan Thiruchelvam; Kodeeswaran Parameshwaran; Engy Abdel Rahman; Senthilkumar S. Karuppagounder; Kevin W. Huggins; Carl A. Pinkert; Rajesh Amin; Muralikrishnan Dhanasekaran; Vishnu Suppiramaniam

To better understand the role of insulin signaling in the development of Alzheimers disease (AD), we utilized an animal model (intracerebroventricular injection of streptozotocin-ic-streptozotocin (STZ)) that displays insulin resistance only in the brain and exhibits AD pathology. In this model, deficits in hippocampal synaptic transmission and long-term potentiation (LTP) were observed. The decline in LTP correlated with decreased expression of NMDAR subunits NR2A and NR2B. The deficits in LTP were accompanied by changes in the expression and function of synaptic AMPARs. In ic-STZ animals, an alteration in integrin-linked kinase (ILK)-glycogen synthase kinase 3 beta (GSK-3-β) signaling was identified (p < 0.05). Similarly, there was decreased expression (p < 0.05) of brain derived neurotropic factor (BDNF) and stargazin, an AMPAR auxiliary subunit; both are required for driving AMPA receptors to the surface of the postsynaptic membrane. Our data illustrate that altered ILK-GSK-3β signaling due to impaired insulin signaling may decrease the trafficking and function of postsynaptic glutamate receptors; thereby, leading to synaptic deficits contributing to memory loss.


Nature Neuroscience | 2013

CaMKII regulates diacylglycerol lipase-[alpha] and striatal endocannabinoid signaling

Brian C. Shonesy; Xiaohan Sasha Wang; Kristie L. Rose; Teniel S. Ramikie; Victoria S. Cavener; Tyler J. Rentz; Anthony J. Baucum; Nidhi Jalan-Sakrikar; Ken Mackie; Danny G. Winder; Sachin Patel; Roger J. Colbran

The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses, but the molecular regulation of 2-AG synthesis is not well understood. Here we identify a functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacted with the C-terminal domain of DGLα, phosphorylated two serine residues and inhibited DGLα activity. Consistent with an inhibitory role for CaMKII in 2-AG synthesis, in vivo genetic inhibition of CaMKII increased striatal DGL activity and basal levels of 2-AG, and CaMKII inhibition augmented short-term retrograde endocannabinoid signaling at striatal glutamatergic synapses. Lastly, blockade of 2-AG breakdown using concentrations of JZL-184 that have no effect in wild-type mice produced a hypolocomotor response in mice with reduced CaMKII activity. These findings provide mechanistic insights into the molecular regulation of striatal endocannabinoid signaling with implications for physiological control of motor function.


Molecular and Cellular Neuroscience | 2011

Loss of Thr286 phosphorylation disrupts synaptic CaMKIIα targeting, NMDAR activity and behavior in pre-adolescent mice.

Richard M. Gustin; Brian C. Shonesy; Stacey Robinson; Tyler J. Rentz; Anthony J. Baucum; Nidhi Jalan-Sakrikar; Danny G. Winder; Gregg D. Stanwood; Roger J. Colbran

In order to provide insight into in vivo roles of CaMKIIα autophosphorylation at Thr286 during postnatal development, behavioral, biochemical, and electrophysiological phenotypes of pre-adolescent Thr286 to Ala CaMKIIα knock-in (T286A-KI) and WT mice were examined. T286A-KI mice displayed cognitive deficits in a novel object recognition test and an anxiolytic phenotype in the elevated plus maze, suggesting disruption of normal developmental processes. At the molecular level, the ratio of total CaMKIIα to CaMKIIβ in hippocampal lysates was significantly decreased≈2-fold in T286A-KI mice, and levels of both isoforms in synaptic subcellular fractions were decreased by≈80%. Total levels of GluA1 AMPA-glutamate receptor subunits and phosphorylation of GluA1 at the CaMKII site (Ser831) in synaptic fractions were unaltered, as were the frequency and amplitude of AMPAR-mediated spontaneous excitatory postsynaptic currents at hippocampal CA3-CA1 synapses. Synaptic levels of NMDA-glutamate receptor GluN1, GluN2A and GluN2B subunits also were unaltered. However, the reduced ratio of CaMKII to NMDAR subunits in synaptic fractions was linked to increased synaptic NMDAR-mediated currents in T286A-KI mice, apparently due to increased functional contributions by GluN2B NMDARs (assessed by Ro 25-6981 sensitivity). Thus, disruption of CaMKII synaptic targeting caused by elimination of Thr286 autophosphorylation leads to synaptic and behavioral deficits during pre-adolescence.


Nature Communications | 2017

Endocannabinoid signalling modulates susceptibility to traumatic stress exposure

Rebecca J. Bluett; Rita Báldi; Andre Haymer; Andrew D. Gaulden; Nolan D. Hartley; Walker P. Parrish; Jordan Baechle; David J. Marcus; Ramzi Mardam-Bey; Brian C. Shonesy; Md. Jashim Uddin; Lawrence J. Marnett; Ken Mackie; Roger J. Colbran; Danny G. Winder; Sachin Patel

Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.


ACS Chemical Neuroscience | 2015

Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain.

Anthony J. Baucum; Brian C. Shonesy; Kristie L. Rose; Roger J. Colbran

Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity and modulates subcellular targeting and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca(2+)-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIβ. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wild-type (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII-associated proteins (CaMKAPs). A total of six and seven autophosphorylation sites in CaMKIIα and CaMKIIβ, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIβ were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIβ were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions and of cytosolic CaMKIIβ at Ser315 and Thr320/Thr321. Significantly more CaMKAPs coprecipitated with WT CaMKII holoenzymes in the synaptic fraction compared to that in the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation of CaMKIIα, likely contributing to the diverse synaptic and behavioral deficits of T286A-KI mice.


Neurobiology of Disease | 2007

Postnatal aniracetam treatment improves prenatal ethanol induced attenuation of AMPA receptor-mediated synaptic transmission

Nayana Wijayawardhane; Brian C. Shonesy; Julia Vaglenova; Thirumalini Vaithianathan; Mark Carpenter; Charles R. Breese; Alexander Dityatev; Vishnu Suppiramaniam

Aniracetam is a nootropic compound and an allosteric modulator of AMPA receptors (AMPARs) which mediate synaptic mechanisms of learning and memory. Here we analyzed impairments in AMPAR-mediated synaptic transmission caused by moderate prenatal ethanol exposure and investigated the effects of postnatal aniracetam treatment on these abnormalities. Pregnant Sprague-Dawley rats were gavaged with ethanol or isocaloric sucrose throughout pregnancy, and subsequently the offspring were treated with aniracetam on postnatal days (PND) 18 to 27. Hippocampal slices prepared from these pups on PND 28 to 34 were used for the whole-cell patch-clamp recordings of AMPAR-mediated spontaneous and miniature excitatory postsynaptic currents in CA1 pyramidal cells. Our results indicate that moderate ethanol exposure during pregnancy results in impaired hippocampal AMPAR-mediated neurotransmission, and critically timed aniracetam treatment can abrogate this deficiency. These results highlight the possibility that aniracetam treatment can restore synaptic transmission and ameliorate cognitive deficits associated with the fetal alcohol syndrome.


The Journal of Neuroscience | 2017

A novel human CAMK2A mutation disrupts dendritic morphology and synaptic transmission, and causes ASD-related behaviors.

Jason R. Stephenson; Xiaohan Wang; Tyler L. Perfitt; Walker P. Parrish; Brian C. Shonesy; Christian R. Marks; Douglas P. Mortlock; Terunaga Nakagawa; James S. Sutcliffe; Roger J. Colbran

Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.


Neurobiology of Disease | 2008

Ameliorating effects of preadolescent aniracetam treatment on prenatal ethanol-induced impairment in AMPA receptor activity

Nayana Wijayawardhane; Brian C. Shonesy; Thirumalini Vaithianathan; Noemi Pandiella; Julia Vaglenova; Charles R. Breese; Alexander Dityatev; Vishnu Suppiramaniam

Ethanol-induced damage in the developing hippocampus may result in cognitive deficits such as those observed in fetal alcohol spectrum disorder (FASD). Cognitive deficits in FASD are partially mediated by alterations in glutamatergic synaptic transmission. Recently, we reported that synaptic transmission mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is impaired following fetal ethanol exposure. This finding led us to develop a rational approach for the treatment of alcohol-related cognitive deficits using aniracetam, an allosteric AMPAR modulator. In the present study, 28 to 34-day-old rats exposed to ethanol in utero were treated with aniracetam, and subsequently exhibited persistent improvement in mEPSC amplitude, frequency, and decay time. Furthermore, these animals expressed positive changes in synaptic single channel properties, suggesting that aniracetam ameliorates prenatal ethanol-induced deficits through modifications at the single channel level. Specifically, single channel open probability, conductance, mean open and closed times, and the number and burst duration were positively affected. Our findings emphasize the utility of compounds which slow the rate of deactivation and desensitization of AMPARs such as aniracetam.


Experimental Neurology | 2008

Ampakine CX516 ameliorates functional deficits in AMPA receptors in a hippocampal slice model of protein accumulation.

Patrick M. Kanju; Kodeeswaran Parameshwaran; Catrina Sims; Ben A. Bahr; Brian C. Shonesy; Vishnu Suppiramaniam

AMPAkines are positive modulators of AMPA receptors, and previous work has shown that these compounds can facilitate synaptic plasticity and improve learning and memory in both animals and humans; thus, their role in the treatment of cognitive impairment is worthy of investigation. In this study, we have utilized an organotypic slice model in which chloroquine-induced lysosomal dysfunction produces many of the pathogenic attributes of Alzheimers disease. Our previous work demonstrated that synaptic AMPA receptor function is impaired in hippocampal slice cultures exhibiting lysosomal dysfunction leading to protein accumulation. The present study investigated the effect of the AMPAkine CX516 on AMPAR-mediated synaptic transmission as well as the CX516 induced modification of single channel AMPA receptor properties in this organotypic slice-culture model. In whole cell recordings from CA1 pyramidal neurons in chloroquine-treated slices we observed a significant decrease in AMPAR-mediated mEPSC frequency and amplitude indicating synaptic dysfunction. Following application of CX516, these parameters returned to nearly normal levels. Similarly, we report chloroquine-induced impairment of AMPAR single channel properties (decreased probability of opening and mean open time), and significant recovery of these properties following CX516 administration. These results suggest that AMPA receptors may be potential pharmaceutical targets for the treatment of neurodegenerative diseases, and highlights AMPAkines, in particular, as possible therapeutic agents.

Collaboration


Dive into the Brian C. Shonesy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sachin Patel

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge