Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian C. Trainor is active.

Publication


Featured researches published by Brian C. Trainor.


Nature Reviews Neuroscience | 2007

Neural mechanisms of aggression

Randy J. Nelson; Brian C. Trainor

Unchecked aggression and violence exact a significant toll on human societies. Aggression is an umbrella term for behaviours that are intended to inflict harm. These behaviours evolved as adaptations to deal with competition, but when expressed out of context, they can have destructive consequences. Uncontrolled aggression has several components, such as impaired recognition of social cues and enhanced impulsivity. Molecular approaches to the study of aggression have revealed biological signals that mediate the components of aggressive behaviour. These signals may provide targets for therapeutic intervention for individuals with extreme aggressive outbursts. This Review summarizes the complex interactions between genes, biological signals, neural circuits and the environment that influence the development and expression of aggressive behaviour.


Hormones and Behavior | 2001

Testosterone, Paternal Behavior, and Aggression in the Monogamous California Mouse (Peromyscus californicus)

Brian C. Trainor; Catherine A. Marler

Testosterone (T) mediates a trade-off, or negative correlation, between paternal behavior and aggression in several seasonally breeding avian species. However, the presence or absence of a T-mediated trade-off in mammals has received less attention. We examined the relationship between paternal behavior and territorial aggression in the biparental California mouse, Peromyscus californicus. In contrast to seasonally breeding birds, T maintains paternal behavior in this year-round territorial species. Castration reduced paternal behavior, whereas T replacement maintained high levels of paternal behavior. We hypothesize that T is aromatized in the brain to estradiol, which in turn stimulates paternal behavior. In contrast to paternal behavior, aggressive behavior was not reduced by castration. Interestingly, only sham males showed an increase in aggression across three aggression tests, while no change was detected in castrated or T-replacement males. Overall, trade-offs between aggression and paternal behavior do not appear to occur in this species. Measures of paternal behavior and aggression in a correlational experiment were actually positively correlated. Our data suggest that it may be worth reexamining the role that T plays in regulating mammalian paternal behavior.


Proceedings of the Royal Society of London B: Biological Sciences | 2002

Testosterone promotes paternal behaviour in a monogamous mammal via conversion to oestrogen

Brian C. Trainor; Catherine A. Marler

Although high testosterone (T) levels inhibit paternal behaviour in birds breeding in temperate zones many paternal mammals have a very different breeding biology, characterized by a post-partum oestrus. In species with post-partum oestrus, males may engage in T-dependent behaviours such as aggression and copulation simultaneously with paternal behaviour. We previously found that T promotes paternal behaviour in the California mouse, Peromyscus californicus. We examine whether this effect is mediated by the conversion of T to oestradiol (E2) by aromatase. In the first experiment, gonadectomized males treated with T or E2 implants showed higher levels of huddling and pup grooming behaviour than gonadectomized males treated with dihydrotestosterone or empty implants. In the second experiment, we used an aromatase inhibitor (fadrozole) (FAD) to confirm these results. Gonadectomized males treated with T + vehicle or E2 + FAD showed higher levels of huddling and pup grooming behaviour than gonadectomized males treated with T + FAD or empty implants. Although E2 is known to promote the onset of maternal behaviour to our knowledge our results are the first to demonstrate that E2 can promote paternal behaviour in a paternal mammal. These results may explain how mammals express paternal behaviour while T levels are elevated.


Hormones and Behavior | 2004

Opposing hormonal mechanisms of aggression revealed through short-lived testosterone manipulations and multiple winning experiences.

Brian C. Trainor; Ian M. Bird; Catherine A. Marler

Territorial aggression is influenced by many social and environmental factors. Since aggression is a costly behavior, individuals should account for multiple factors such as population density or reproductive status before engaging in aggression. Previous work has shown that male California mice (Peromyscus californicus) respond to winning aggressive encounters by initiating aggression more quickly in future encounters, and we investigated the physiological basis for this effect. We found that injections that produced a transient increase in testosterone (T) following an aggressive encounter caused males to behave more aggressively in an encounter the following day. Experience alone was not enough to change aggression, as males treated with saline injections showed no change in aggression. The effect of T injections on aggression was androgen-based, as the inhibition of aromatase did not block the T injections from increasing aggression. Aromatase inhibition did, however, increase aggression in the initial aggression tests (before application of T or saline injections), and aromatase activity in the bed nucleus of the stria terminalis (BNST) was negatively correlated with aggression. A previous study suggested that aromatase activity in the BNST decreases after males become fathers. Thus, distinct neuroendocrine mechanisms allow male California mice to adjust aggressive behavior in response to changes in social and reproductive status.


Frontiers in Neuroendocrinology | 2006

Estrogenic encounters: How interactions between aromatase and the environment modulate aggression

Brian C. Trainor; Helen H. Kyomen; Catherine A. Marler

Initial investigations into the mechanistic basis of aggression focused on the role of testosterone (T) and a variety of studies on non-human animals found that elevated T levels promote aggression. However, many correlational studies have not detected a significant association between aggression and peripheral T levels. One reason for this inconsistency may be due to differential metabolism of T within the brain, in particular, the conversion of T to estrogen by aromatase. Thus, differences in aromatase enzyme activity, estrogen receptor expression, and related cofactors may have important effects on how steroids affect aggressive behavior. Hormone manipulation studies conducted in a wide variety of species indicate that estrogens modulate aggression. There is also growing evidence that social experience has important effects on the production of estrogen within the brain, and some cases can not be explained by androgenic regulation of aromatase. Such changes in central aromatase activity may play an important role in determining how social experiences affect the probability of whether an individual engages in aggressive behavior. Although studies have been conducted in many taxa, there has been relatively little integration between literatures examining aggression in different species. In this review, we compare and contrast studies examining aggression in birds, mammals, and humans. By taking an integrative approach to our review, we consider mechanisms that could explain species differences in how estrogen modulates aggression.


Hormones and Behavior | 2006

Paternal behavior influences development of aggression and vasopressin expression in male California mouse offspring

Cristianne R.M. Frazier; Brian C. Trainor; Catherine J. Cravens; Tina K. Whitney; Catherine A. Marler

Parental care has been demonstrated to have important effects on offspring behavioral development. California mice (Peromyscus californicus) are biparental, and correlational evidence suggests that pup retrieving by fathers has important effects on the development of aggressive behavior and extra-hypothalamic vasopressin systems. We tested whether retrievals affected these systems by manipulating paternal retrieval behavior between day 15 and 21 postpartum. Licking and grooming behavior affect behavioral development in rats, so we also experimentally reduced huddling and grooming behavior by castrating a subset of fathers. Experimentally increasing the frequency of paternal pup retrieving behavior decreased attack latency in resident-intruder in both male and female adult offspring, whereas experimental reduction of huddling and grooming had no effect. In a separate group of male offspring, we examined vasopressin immunoreactivity (AVP-ir) in two regions of the posterior bed nucleus of the stria terminalis (BNST): the dorsal fiber tracts (dBNST) and the ventral cell body-containing region (vBNST). Experimentally increasing retrievals led to an apparent shift in AVP-ir distribution. Specifically, offspring from the high retrieval group had more AVP-ir than offspring from the sham retrieval group in the dBNST, whereas the opposite was observed in the vBNST. Experimental reduction of paternal grooming was associated with increased AVP-ir in the paraventricular nucleus and also increased corticosterone and progesterone, similar to observed effects of maternal grooming on HPA function. This study provides further evidence that paternal behavior influences the development of aggression and associated neural substrates.


Hormones and Behavior | 2008

Rapid effects of estradiol on male aggression depend on photoperiod in reproductively non-responsive mice

Brian C. Trainor; M. Sima Finy; Randy J. Nelson

In three genuses and four species of rodents, housing in winter-like short days (8L:16D) increases male aggressive behavior. In all of these species, males undergo short-day induced regression of the reproductive system. Some studies, however, suggest that the effect of photoperiod on aggression may be independent of reproductive responses. We examined the effects of photoperiod on aggressive behavior in California mice (Peromyscus californicus), which do not display reproductive responsiveness to short days. As expected, short days had no effect on plasma testosterone. Estrogen receptor alpha and estrogen receptor beta immunostaining did not differ in the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, or medial amygdala. However, males housed in short days were significantly more aggressive than males housed in long days. Similar to previous work in beach mice (Peromyscus polionotus), estradiol rapidly increased aggression when male California mice were housed in short days but not when housed in long days. These data suggest that the effects of photoperiod on aggression and estrogen signaling are independent of reproductive responses. The rapid action of estradiol on aggression in short-day mice also suggests that nongenomic mechanisms mediate the effects of estrogens in short days.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Photoperiod reverses the effects of estrogens on male aggression via genomic and nongenomic pathways

Brian C. Trainor; Shili Lin; M. Sima Finy; Michael R. Rowland; Randy J. Nelson

Despite recent discoveries of the specific contributions of genes to behavior, the molecular mechanisms mediating contributions of the environment are understudied. We demonstrate that the behavioral effects of estrogens on aggression are completely reversed by a discrete environmental signal, day length. Selective activation of either estrogen receptor α or β decreases aggression in long days and increases aggression in short days. In the bed nucleus of the stria terminalis, one of several nuclei in a neural circuit that controls aggression, estrogen-dependent gene expression is increased in long days but not in short days, suggesting that estrogens decrease aggression by driving estrogen-dependent gene expression. Estradiol injections increased aggression within 15 min in short days but not in long days, suggesting that estrogens increase aggression in short days primarily via nongenomic pathways. These data demonstrate that the environment can dictate how hormones affect a complex behavior by altering the molecular pathways targeted by steroid receptors.


Hormones and Behavior | 2006

Individual differences in estrogen receptor α in select brain nuclei are associated with individual differences in aggression

Brian C. Trainor; Kelly M. Greiwe; Randy J. Nelson

Steroid hormones play an important role in modulating social behavior in many species. Estrogens are thought to act on an interconnected network of hypothalamic and limbic brain areas to affect aggressive behavior, although the specific nuclei unknown remain unspecified. We show that individual variation in estrogen receptor alpha (ERalpha) immunoreactivity in the lateral septum (LS), ventral bed nucleus of the stria terminalis (vBNST), and anterior hypothalamus (AHA) of CD-1 mice is positively correlated with aggressive behavior. When males were treated with fadrozole (an aromatase inhibitor), aggressive behavior was reduced, although castration did not reduce aggression. These results suggest that estrogens modulate aggressive behavior by acting on a circuit that includes the LS, vBNST, and AHA and that the source of estrogens is non-gonadal. Fadrozole also decreased c-fos expression in the lateral septum following aggressive encounters. Although the effects of estrogen on aggression appear to involve regulation of neuronal activity in the LS, additional processes are likely involved. These results suggest that estrogen acts in a specific subset of a complex network of nuclei to affect aggressive behavior.


PLOS ONE | 2011

Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

Brian C. Trainor; Michael C. Pride; Rosalina Villalon Landeros; Nicholas W. Knoblauch; Elizabeth Y. Takahashi; Andrea L. Silva; Katie K. Crean

Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior.

Collaboration


Dive into the Brian C. Trainor's collaboration.

Top Co-Authors

Avatar

Randy J. Nelson

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar

Catherine A. Marler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Hao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge