Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Choo is active.

Publication


Featured researches published by Brian Choo.


Nature | 2013

A Silurian placoderm with osteichthyan-like marginal jaw bones

Min Zhu; Xiaobo Yu; Per Ahlberg; Brian Choo; Jing Lu; Tuo Qiao; Qingming Qu; Wenjin Zhao; Liantao Jia; Henning Blom; You’an Zhu

The gnathostome (jawed vertebrate) crown group comprises two extant clades with contrasting character complements. Notably, Chondrichthyes (cartilaginous fish) lack the large dermal bones that characterize Osteichthyes (bony fish and tetrapods). The polarities of these differences, and the morphology of the last common ancestor of crown gnathostomes, are the subject of continuing debate. Here we describe a three-dimensionally preserved 419-million-year-old placoderm fish from the Silurian of China that represents the first stem gnathostome with dermal marginal jaw bones (premaxilla, maxilla and dentary), features previously restricted to Osteichthyes. A phylogenetic analysis places the new form near the top of the gnathostome stem group but does not fully resolve its relationships to other placoderms. The analysis also assigns all acanthodians to the chondrichthyan stem group. These results suggest that the last common ancestor of Chondrichthyes and Osteichthyes had a macromeric dermal skeleton, and provide a new framework for studying crown gnathostome divergence.


Nature | 2015

Copulation in antiarch placoderms and the origin of gnathostome internal fertilization

John A. Long; Elga Mark-Kurik; Zerina Johanson; Michael S. Y. Lee; Gavin C. Young; Zhu Min; Per Ahlberg; M. E. J. Newman; Roger Jones; Jan L. Den Blaauwen; Brian Choo; Kate Trinajstic

Reproduction in jawed vertebrates (gnathostomes) involves either external or internal fertilization. It is commonly argued that internal fertilization can evolve from external, but not the reverse. Male copulatory claspers are present in certain placoderms, fossil jawed vertebrates retrieved as a paraphyletic segment of the gnathostome stem group in recent studies. This suggests that internal fertilization could be primitive for gnathostomes, but such a conclusion depends on demonstrating that copulation was not just a specialized feature of certain placoderm subgroups. The reproductive biology of antiarchs, consistently identified as the least crownward placoderms and thus of great interest in this context, has until now remained unknown. Here we show that certain antiarchs possessed dermal claspers in the males, while females bore paired dermal plates inferred to have facilitated copulation. These structures are not associated with pelvic fins. The clasper morphology resembles that of ptyctodonts, a more crownward placoderm group, suggesting that all placoderm claspers are homologous and that internal fertilization characterized all placoderms. This implies that external fertilization and spawning, which characterize most extant aquatic gnathostomes, must be derived from internal fertilization, even though this transformation has been thought implausible. Alternatively, the substantial morphological evidence for placoderm paraphyly must be rejected.


Biology Letters | 2012

An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates

Min Zhu; Xiaobo Yu; Brian Choo; Jun-Qing Wang; Liantao Jia

Almost all gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, ‘acanthodians’ and most placoderms) possess paired pectoral and pelvic fins. To date, it has generally been believed that antiarch placoderms (extinct armoured jawed fishes from the Silurian–Devonian periods) lacked pelvic fins. The putative absence of pelvic fins is a key character bearing on the monophyly or paraphyly of placoderms. It also has far-reaching implications for studying the sequence of origin of pelvic girdles versus that of movable jaws in the course of vertebrate evolution. Parayunnanolepis xitunensis represents the only example of a primitive antiarch with extensive post-thoracic preservation, and its original description has been cited as confirming the primitive lack of pelvic fins in early antiarchs. Here, we present a revised description of Parayunnanolepis and offer the first unambiguous evidence for the presence of pelvic girdles in antiarchs. As antiarchs are placed at the base of the gnathostome radiation in several recent studies, our finding shows that all jawed vertebrates (including antiarch placoderms) primitively possess both pectoral and pelvic fins and that the pelvic fins did not arise within gnathostomes at a point subsequent to the origin of jaws.


Antarctic Science | 2008

A new basal actinopterygian fish from the Middle Devonian Aztec Siltstone of Antarctica

John A. Long; Brian Choo; Gavin C. Young

Abstract A new basal actinopterygian fish, Donnrosenia schaefferi gen. et sp. nov., is described from the Middle Devonian (Givetian) Aztec Siltstone of southern Victoria Land, Antarctica. Donnrosenia gen. nov. is characterized by the large parietals which are of almost equivalent size to the frontals, very small intertemporals, a small accessory operculum situated dorsally to the prominent anterodorsal process of the suboperculum, a deep dentary with anterior flexure, porous ornamentation on the clavicle, an elongate body form with macromeric squamation, an absence of paired fringing fulcra on the fins, and pectoral lepidotrichia which are unsegmented for much of their length. A phylogenetic analysis based on dermal skeletal features of Devonian actinopterygians indicates that Donnrosenia gen. nov. is the sister taxon to Howqualepis from the Middle Devonian of Victoria, Australia, and is embedded within a possible clade containing the actinopterygians from the Gogo Formation, Western Australia. This supports the concept of an endemic radiation of East Gondwanan actinopterygians, and reinforces the already strong biogeographical similarities between the Middle Devonian palaeofaunas of Australia and Antarctica.


Nature Communications | 2014

Nothosaur foraging tracks from the Middle Triassic of southwestern China

Qiyue Zhang; Wen Wen; Shixue Hu; Michael J. Benton; Changyong Zhou; Tao Xie; Tao Lü; Jinyuan Huang; Brian Choo; Zhong-Qiang Chen; Jun Liu; Qican Zhang

The seas of the Mesozoic (266-66 Myr ago) were remarkable for predatory marine reptiles, but their modes of locomotion have been debated. One problem has been the absence of tracks, although there is no reason to expect that swimmers would produce tracks. We report here seabed tracks made by Mesozoic marine reptiles, produced by the paddles of nothosaurs (Reptilia, Sauropterygia) in the Middle Triassic of the Luoping localities in Yunnan, southwestern China. These show that the track-making nothosaurs used their forelimbs for propulsion, they generally rowed (both forelimbs operating in unison rather than alternately), and the forelimb entered medially, dug in as the paddle tip gained purchase, and withdrew cleanly. These inferences may provide evidence for swimming modes, or it could be argued that the locomotory modes indicated by the tracks were restricted to such contact propulsion. Such punting behaviour may have been used to flush prey from the bottom muds.


PLOS ONE | 2012

Fossil Fishes from China Provide First Evidence of Dermal Pelvic Girdles in Osteichthyans

Min Zhu; Xiaobo Yu; Brian Choo; Qingming Qu; Liantao Jia; Wenjin Zhao; Tuo Qiao; Jing Lu

Background The pectoral and pelvic girdles support paired fins and limbs, and have transformed significantly in the diversification of gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, acanthodians and placoderms). For instance, changes in the pectoral and pelvic girdles accompanied the transition of fins to limbs as some osteichthyans (a clade that contains the vast majority of vertebrates – bony fishes and tetrapods) ventured from aquatic to terrestrial environments. The fossil record shows that the pectoral girdles of early osteichthyans (e.g., Lophosteus, Andreolepis, Psarolepis and Guiyu) retained part of the primitive gnathostome pectoral girdle condition with spines and/or other dermal components. However, very little is known about the condition of the pelvic girdle in the earliest osteichthyans. Living osteichthyans, like chondrichthyans (cartilaginous fishes), have exclusively endoskeletal pelvic girdles, while dermal pelvic girdle components (plates and/or spines) have so far been found only in some extinct placoderms and acanthodians. Consequently, whether the pectoral and pelvic girdles are primitively similar in osteichthyans cannot be adequately evaluated, and phylogeny-based inferences regarding the primitive pelvic girdle condition in osteichthyans cannot be tested against available fossil evidence. Methodology/Principal Findings Here we report the first discovery of spine-bearing dermal pelvic girdles in early osteichthyans, based on a new articulated specimen of Guiyu oneiros from the Late Ludlow (Silurian) Kuanti Formation, Yunnan, as well as a re-examination of the previously described holotype. We also describe disarticulated pelvic girdles of Psarolepis romeri from the Lochkovian (Early Devonian) Xitun Formation, Yunnan, which resemble the previously reported pectoral girdles in having integrated dermal and endoskeletal components with polybasal fin articulation. Conclusions/Significance The new findings reveal hitherto unknown similarity in pectoral and pelvic girdles among early osteichthyans, and provide critical information for studying the evolution of pelvic girdles in osteichthyans and other gnathostomes.


Scientific Reports | 2015

The largest Silurian vertebrate and its palaeoecological implications

Brian Choo; Min Zhu; Wenjin Zhao; Liaotao Jia; Y. L. Zhu

An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes.


PLOS ONE | 2017

A new osteichthyan from the late Silurian of Yunnan, China

Brian Choo; Min Zhu; Qingming Qu; Xiaobo Yu; Liantao Jia; Wenjin Zhao

Our understanding of early gnathostome evolution has been hampered by a generally scant fossil record beyond the Devonian. Recent discoveries from the late Silurian Xiaoxiang Fauna of Yunnan, China, have yielded significant new information, including the earliest articulated osteichthyan fossils from the Ludlow-aged Kuanti Formation. Here we describe the partial postcranium of a new primitive bony fish from the Kuanti Formation that represents the second known taxon of pre-Devonian osteichthyan revealing articulated remains. The new form, Sparalepis tingi gen. et sp. nov., displays similarities with Guiyu and Psarolepis, including a spine-bearing pectoral girdle and a placoderm-like dermal pelvic girdle, a structure only recently identified in early osteichthyans. The squamation with particularly thick rhombic scales shares an overall morphological similarity to that of Psarolepis. However, the anterior flank scales of Sparalepis possess an unusual interlocking system of ventral bulges embraced by dorsal concavities on the outer surfaces. A phylogenetic analysis resolves Sparalepis within a previously recovered cluster of stem-sarcopterygians including Guiyu, Psarolepis and Achoania. The high diversity of osteichthyans from the Ludlow of Yunnan strongly contrasts with other Silurian vertebrate assemblages, suggesting that the South China block may have been an early center of diversification for early gnathostomes, well before the advent of the Devonian “Age of Fishes”.


Journal of Vertebrate Paleontology | 2015

A New Species of the Devonian Actinopterygian Moythomasia from Bergisch Gladbach, Germany, and Fresh Observations on M. durgaringa from the Gogo Formation of Western Australia

Brian Choo

ABSTRACT Moythomasia is one of the most speciose and completely known of all Devonian actinopterygian genera and has been incorporated into numerous phylogenetic studies. However, several species remain incompletely documented despite being known from excellent fossil material. Specimens from the Late Devonian of Germany and Australia are described herein. A form from Bergisch Gladbach, Germany, previously described by Jessen as Moythomasia cf. striata, is recognized as a new species: M. lineata, sp. nov. Newly prepared specimens of Moythomasia durgaringa from the Gogo Formation, Western Australia, allow for the first rigorous full-body reconstructions of this species. Aspects of the dermal skeleton and body shape of this form are updated over previous descriptions. The genus is currently problematic owing to the highly fragmentary nature of the type species, M. perforata from Kokenhusen; however, it is considered provisionally valid owing to distinctive cranial ornamentation. The three completely known species (M. durgaringa, M. nitda, and M. lineata, sp. nov.) do not share any unique squamation-based characters exclusive to other Devonian actinopterygians, invalidating purely scaled-based referrals to this genus.


eLife | 2018

Neurocranial anatomy of an enigmatic Early Devonian fish sheds light on early osteichthyan evolution

Alice M. Clement; Benedict King; Sam Giles; Brian Choo; Per Ahlberg; Gavin C. Young; John A. Long

The skull of ‘Ligulalepis’ from the Early Devonian of Australia (AM-F101607) has significantly expanded our knowledge of early osteichthyan anatomy, but its phylogenetic position has remained uncertain. We herein describe a second skull of ‘Ligulalepis’ and present micro-CT data on both specimens to reveal novel anatomical features, including cranial endocasts. Several features previously considered to link ‘Ligulalepis’ with actinopterygians are now considered generalized osteichthyan characters or of uncertain polarity. The presence of a lateral cranial canal is shown to be variable in its development between specimens. Other notable new features include the presence of a pineal foramen, the some detail of skull roof sutures, the shape of the nasal capsules, a placoderm-like hypophysial vein, and a chondrichthyan-like labyrinth system. New phylogenetic analyses place ‘Ligulalepis’ as a stem osteichthyan, specifically as the sister taxon to ‘psarolepids’ plus crown osteichthyans. The precise position of ‘psarolepids’ differs between parsimony and Bayesian analyses.

Collaboration


Dive into the Brian Choo's collaboration.

Top Co-Authors

Avatar

Min Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liantao Jia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gavin C. Young

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Wenjin Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge