Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian D. Adair is active.

Publication


Featured researches published by Brian D. Adair.


Journal of Clinical Investigation | 2010

Specialized roles for cysteine cathepsins in health and disease.

Jochen Reiser; Brian D. Adair; Thomas Reinheckel

Cathepsins were originally identified as proteases that act in the lysosome. Recent work has uncovered nontraditional roles for cathepsins in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized cathepsins participate in many physiologic and pathophysiologic cellular processes, in which they can act as both digestive and regulatory proteases. In this review, we discuss the transcriptional and translational control of cathepsin expression, the regulation of intracellular sorting of cathepsins, and the structural basis of cathepsin activation and inhibition. In particular, we highlight the emerging roles of various cathepsin forms in disease, particularly those of the cardiac and renal systems.


Molecular Cell | 2003

Type IV Pilin Structure and Assembly X-Ray and EM Analyses of Vibrio cholerae Toxin-Coregulated Pilus and Pseudomonas aeruginosa PAK Pilin

Lisa Craig; Ronald K. Taylor; Michael E. Pique; Brian D. Adair; Andrew S. Arvai; Mona Singh; Sarah J. Lloyd; David S. Shin; Elizabeth D. Getzoff; Mark Yeager; Katrina T. Forest; John A. Tainer

Pilin assembly into type IV pili is required for virulence by bacterial pathogens that cause diseases such as cholera, pneumonia, gonorrhea, and meningitis. Crystal structures of soluble, N-terminally truncated pilin from Vibrio cholera toxin-coregulated pilus (TCP) and full-length PAK pilin from Pseudomonas aeruginosa reveal a novel TCP fold, yet a shared architecture for the type IV pilins. In each pilin subunit a conserved, extended, N-terminal alpha helix wrapped by beta strands anchors the structurally variable globular head. Inside the assembled pilus, characterized by cryo-electron microscopy and crystallography, the extended hydrophobic alpha helices make multisubunit contacts to provide mechanical strength and flexibility. Outside, distinct interactions of adaptable heads contribute surface variation for specificity of pilus function in antigenicity, motility, adhesion, and colony formation.


Journal of Cell Biology | 2005

Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin

Brian D. Adair; Jian-Ping Xiong; Catherine Maddock; Simon Goodman; M. Amin Arnaout; Mark Yeager

Integrins are αβ heterodimeric cell surface receptors that mediate transmembrane signaling by binding extracellular and cytoplasmic ligands. The ectodomain of integrin αVβ3 crystallizes in a bent, genuflexed conformation considered to be inactive (unable to bind physiological ligands in solution) unless it is fully extended by activating stimuli. We generated a stable, soluble complex of the Mn2+-bound αVβ3 ectodomain with a fragment of fibronectin (FN) containing type III domains 7 to 10 and the EDB domain (FN7-EDB-10). Transmission electron microscopy and single particle image analysis were used to determine the three-dimensional structure of this complex. Most αVβ3 particles, whether unliganded or FN-bound, displayed compact, triangular shapes. A difference map comparing ligand-free and FN-bound αVβ3 revealed density that could accommodate the RGD-containing FN10 in proximity to the ligand-binding site of β3, with FN9 just adjacent to the synergy site binding region of αV. We conclude that the ectodomain of αVβ3 manifests a bent conformation that is capable of stably binding a physiological ligand in solution.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Three-dimensional model of the human platelet integrin αIIbβ3 based on electron cryomicroscopy and x-ray crystallography

Brian D. Adair; Mark Yeager

Integrins are a large family of heterodimeric transmembrane signaling proteins that affect diverse biological processes such as development, angiogenesis, wound healing, neoplastic transformation, and thrombosis. We report here the three-dimensional structure at 20-Å resolution of the unliganded, low-affinity state of the human platelet integrin αIIbβ3 derived by electron cryomicroscopy and single particle image reconstruction. The large ectodomain and small cytoplasmic domains are connected by a rod of density that we interpret as two parallel transmembrane α-helices. The docking of the x-ray structure of the αVβ3 ectodomain into the electron cryomicroscopy map of αIIbβ3 requires hinge movements at linker regions between domains in the crystal structure. Comparison of the putative high- and low-affinity conformations reveals dramatic conformational changes associated with integrin activation.


Journal of Virology | 2005

Complementarity in the Supramolecular Design of Arenaviruses and Retroviruses Revealed by Electron Cryomicroscopy and Image Analysis

Benjamin W. Neuman; Brian D. Adair; John W. Burns; Ronald A. Milligan; Michael J. Buchmeier; Mark Yeager

ABSTRACT Arenaviruses are rodent-borne agents of diseases, including potentially lethal human hemorrhagic fevers. These enveloped viruses encapsidate a bisegmented ambisense single-stranded RNA genome that can be packaged in variable copy number. Electron cryomicroscopy and image analysis of New World Pichinde and Tacaribe arenaviruses and Old World lymphocytic choriomeningitis virus revealed pleomorphic enveloped particles ranging in diameter from ∼400 to ∼2,000 Å. The surface spikes were spaced ∼100 Å apart and extended ∼90 Å from the maximum phospholipid headgroup density of the outer bilayer leaflet. Distinctive stalk and head regions extended radially ∼30 and ∼60 Å from the outer bilayer leaflet, respectively. Two interior layers of density apposed to the inner leaflet of the viral lipid bilayer were assigned as protein Z and nucleoprotein (NP) molecules on the basis of their appearance, spacing, and projected volume. Analysis of en face views of virions lacking the GP-C spikes showed reflections consistent with paracrystalline packing of the NP molecules in a lattice with edges of ∼57 and ∼74 Å. The structural proteins of retroviruses and arenaviruses assemble with similar radial density distributions, using common cellular components.


Journal of Virology | 2006

Supramolecular Architecture of Severe Acute Respiratory Syndrome Coronavirus Revealed by Electron Cryomicroscopy

Benjamin W. Neuman; Brian D. Adair; Craig Yoshioka; Joel Quispe; Gretchen Orca; Peter Kuhn; Ronald A. Milligan; Mark Yeager; Michael J. Buchmeier

ABSTRACT Coronavirus particles are enveloped and pleomorphic and are thus refractory to crystallization and symmetry-assisted reconstruction. A novel methodology of single-particle image analysis was applied to selected virus features to obtain a detailed model of the oligomeric state and spatial relationships among viral structural proteins. Two-dimensional images of the S, M, and N structural proteins of severe acute respiratory syndrome coronavirus and two other coronaviruses were refined to a resolution of ∼4 nm. Proteins near the viral membrane were arranged in overlapping lattices surrounding a disordered core. Trimeric glycoprotein spikes were in register with four underlying ribonucleoprotein densities. However, the spikes were dispensable for ribonucleoprotein lattice formation. The ribonucleoprotein particles displayed coiled shapes when released from the viral membrane. Our results contribute to the understanding of the assembly pathway used by coronaviruses and other pleomorphic viruses and provide the first detailed view of coronavirus ultrastructure.


Nature Structural & Molecular Biology | 2014

Structural basis for pure antagonism of integrin αVβ3 by a high affinity form of fibronectin

Johannes F. Van Agthoven; Jian-Ping Xiong; José Luis Alonso; Xianliang Rui; Brian D. Adair; Simon Goodman; M. Amin Arnaout

Integrins are important therapeutic targets. However, current RGD-based anti-integrin drugs are also partial agonists, inducing conformational changes that trigger potentially fatal immune reactions and paradoxical cell adhesion. Here we describe the first crystal structure of αVβ3 bound to a physiologic ligand, the tenth type III RGD domain of wild-type fibronectin (wtFN10), or to a high-affinity mutant (hFN10) shown here to act as a pure antagonist. Comparison of these structures revealed a central π-π interaction between Trp1496 in the RGD-containing loop of hFN10 and Tyr122 of the β3 subunit that blocked conformational changes triggered by wtFN10 and trapped hFN10-bound αVβ3 in an inactive conformation. Removing the Trp1496 or Tyr122 side chains or reorienting Trp1496 away from Tyr122 converted hFN10 into a partial agonist. These findings offer new insights into the mechanism of integrin activation and a basis for the design of RGD-based pure antagonists.


Biophysical Journal | 2008

Single Particle Image Reconstruction of the Human Recombinant Kv2.1 Channel

Brian D. Adair; Rashmi S. Nunn; Shannon Lewis; I D Dukes; Louis H. Philipson; Mark Yeager

Kv2.1 channels are widely expressed in neuronal and endocrine cells and generate slowly activating K+ currents, which contribute to repolarization in these cells. Kv2.1 is expressed at high levels in the mammalian brain and is a major component of the delayed rectifier current in the hippocampus. In addition, Kv2.1 channels have been implicated in the regulation of membrane repolarization, cytoplasmic calcium levels, and insulin secretion in pancreatic beta-cells. They are therefore an important drug target for the treatment of Type II diabetes mellitus. We used electron microscopy and single particle image analysis to derive a three-dimensional density map of recombinant human Kv2.1. The tetrameric channel is egg-shaped with a diameter of approximately 80 A and a long axis of approximately 120 A. Comparison to known crystal structures of homologous domains allowed us to infer the location of the cytoplasmic and transmembrane assemblies. There is a very good fit of the Kv1.2 crystal structure to the assigned transmembrane assembly of Kv2.1. In other low-resolution maps of K+ channels, the cytoplasmic N-terminal and transmembrane domains form separate rings of density. In contrast, Kv2.1 displays contiguous density that connects the rings, such that there are no large windows between the channel interior and the cytoplasmic space. The crystal structure of KcsA is thought to be in a closed conformation, and the good fit of the KcsA crystal structure to the Kv2.1 map suggests that our preparations of Kv2.1 may also represent a closed conformation. Substantial cytoplasmic density is closely associated with the T1 tetramerization domain and is ascribed to the approximately 184 kDa C-terminal regulatory domains within each tetramer.


Journal of Immunology | 2011

Stable Coordination of the Inhibitory Ca2+ Ion at the Metal Ion-Dependent Adhesion Site in Integrin CD11b/CD18 by an Antibody-Derived Ligand Aspartate: Implications for Integrin Regulation and Structure-Based Drug Design

Bhuvaneshwari Mahalingam; Kaouther Ajroud; José Luis Alonso; Saurabh Anand; Brian D. Adair; Alberto L. Horenstein; Fabio Malavasi; Jian-Ping Xiong; Arnaout Ma

A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal ion-dependent adhesion site (MIDAS) in the integrin A domain. This interaction stabilizes the A domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking mAb 107 binds MIDAS of integrin CD11b/CD18 A domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over the Mg2+ ion at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of the Ca2+ ion at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+ ion. Binding of the Fab fragment of mAb 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that the denticity of the ligand Asp/Glu can modify the divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists.


Journal of Immunology | 2011

Stable Coordination of the Inhibitory Ca 2+ Ion at the Metal Ion-Dependent Adhesion Site in Integrin CD11b/CD18 by an Antibody-Derived Ligand Aspartate: Implications for Integrin Regulation and Structure-Based Drug Design

Bhuvaneshwari Mahalingam; Kaouther Ajroud; José Luis Alonso; Saurabh Anand; Brian D. Adair; Alberto L. Horenstein; Fabio Malavasi; Jian-Ping Xiong; M. Amin Arnaout

A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal ion-dependent adhesion site (MIDAS) in the integrin A domain. This interaction stabilizes the A domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking mAb 107 binds MIDAS of integrin CD11b/CD18 A domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over the Mg2+ ion at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of the Ca2+ ion at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+ ion. Binding of the Fab fragment of mAb 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that the denticity of the ligand Asp/Glu can modify the divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists.

Collaboration


Dive into the Brian D. Adair's collaboration.

Top Co-Authors

Avatar

Mark Yeager

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Reiser

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge