Brian D. Burrell
University of South Dakota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian D. Burrell.
The Journal of Neuroscience | 2004
Brian D. Burrell; Christie L. Sahley
Long-term potentiation (LTP) of synaptic transmission was observed in two types of synapses that converge on the same postsynaptic neuron in the leech CNS. These synapses were made by identifiable sensory neurons, the mechanosensory touch (T-) and pressure (P-) cells, onto the S-cell, an interneuron critical for certain forms of learning. Changes in both the T-S and P-S synapses appear to be activity dependent because LTP was restricted to inputs that had undergone tetanization; however, properties of synaptic plasticity at the T-S and P-S connections differ considerably. At the P-S synapse, LTP was induced in the tetanized synapse but not in the nontetanized synapse tested in parallel. P-S LTP was blocked by the NMDA receptor antagonist dl-2-amino-5-phosphono-valeric acid (AP-5) or by lowering the extracellular concentration of glycine, an NMDA receptor (NMDAR) co-agonist. P-S LTP was strongly affected by the initial amplitude of the synaptic potential at the time LTP was induced. Smaller amplitude synapses (<3.5 mV) underwent robust potentiation, whereas the less common, larger amplitude synapse (>3.5 mV) depressed after tetanization. At the T-S synapse, tetanization simultaneously induced homosynaptic LTP in the tetanized input and heterosynaptic long-term depression (LTD) in the input made by a nontetanized T-cell onto the same S-cell. Interestingly, AP-5 failed to block homosynaptic LTP at the T-S synapse but did prevent heterosynaptic LTD. T-S LTP was not affected by the initial EPSP amplitude. Thus, leech neurons exhibit synaptic plasticity with properties similar to LTP and LTD found in the vertebrate nervous system.
The Journal of Comparative Neurology | 2003
Brian D. Burrell; Christie L. Sahley; Kenneth J. Muller
The leech escape reflex—shortening of the body—can change with nonassociative conditioning, including sensitization, habituation, and dishabituation. Capacity for sensitization, which is an enhancement of the reflex, is lost when a single S‐interneuron is ablated, but the reflex response itself remains. In the present experiments, the S‐interneurons axon in the living leech was filled with 6‐carboxyfluorescein (6‐CF) dye and cut with an argon laser microbeam (λ = 488 nm). In contrast to sham‐operated animals, axotomized preparations did not sensitize, reflecting the key role of the S‐cell. By 2 weeks or more, S‐cell axons had regenerated and reestablished synapses at their usual locations with neighboring S‐cells. By 4 weeks, this restored the ability to sensitize to a level indistinguishable from that of controls, but an intermediate state of recovery was seen from 2–3 weeks after injury—a period not previously examined. The small capacity for sensitization among newly regenerated preparations was significantly lower than in sham controls but appeared higher than in animals whose cut S‐cell axon had not regenerated its synapse. The results confirm the crucial role of the S‐cell in sensitization. Moreover, full sensitization does not occur immediately upon synapse regeneration. J. Comp. Neurol. 457:67–74, 2003.
Journal of Neurophysiology | 2010
Sharleen Yuan; Brian D. Burrell
Recent studies have found that some forms of endocannabinoid-dependent synaptic plasticity in the hippocampus are mediated through activation of transient potential receptor vanilloid (TRPV) receptors instead of cannabinoid receptors CB1 or CB2. The potential role for synaptic localization of TRPV receptors during endocannabinoid modulation of nociceptive synapses was examined in the leech CNS where it is possible to record from the same pair of neurons from one preparation to the next. Long-term depression (LTD) in the monosynaptic connection between the nociceptive (N) sensory neuron and the longitudinal (L) motor neuron was found to be endocannabinoid-dependent given that this depression was blocked by RHC-80267, an inhibitor of DAG lipase that is required for 2-arachidonoyl glycerol (2AG) synthesis. Intracellular injection of a second DAG lipase inhibitor, tetrahyrdolipstatin (THL) was also able to block this endocannabinoid-dependent LTD (ecLTD) when injected postsynaptically but not presynaptically. N-to-L ecLTD was also inhibited by the TRPV1 antagonists capsazepine and SB 366791. Bath application of 2AG or the TRPV1 agonists capsaicin and resiniferatoxin mimicked LTD and both capsaicin- and 2AG-induced depression were blocked by capsazepine. In addition, pretreatment with 2AG or capsaicin occluded subsequent expression of LTD induced by repetitive activity. Presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both activity- and 2AG-induced ecLTD, suggesting that a presynaptic TRPV-like receptor in the leech mediated this form of synaptic plasticity. These findings potentially extend the role ecLTD to nociceptive synapses and suggest that invertebrate synapses, which are thought to lack CB1/CB2 receptor orthologues, utilize a TRPV-like protein as an endocannabinoid receptor.
Cellular and Molecular Neurobiology | 2005
Yuanli Duan; J.E. Panoff; Brian D. Burrell; Christie L. Sahley; Kenneth J. Muller
A major problem for neuroscience has been to find a means to achieve reliable regeneration of synaptic connections following injury to the adult CNS. This problem has been solved by the leech, where identified neurons reconnect precisely with their usual targets following axotomy, re-establishing in the adult the connections formed during embryonic development.It cannot be assumed that once axons regenerate specific synapses, function will be restored. Recent work on the leech has shown following regeneration of the synapse between S-interneurons, which are required for sensitization of reflexive shortening, a form of non-associative learning, the capacity for sensitization is delayed.The steps in repair of synaptic connections in the leech are reviewed, with the aim of understanding general mechanisms that promote successful repair. New results are presented regarding the signals that regulate microglial migration to lesions, a first step in the repair process. In particular, microglia up to 900 μm from the lesion respond within minutes by moving rapidly toward the injury, controlled in part by nitric oxide (NO), which is generated immediately at the lesion and acts via a soluble guanylate cyclase (sGC). The cGMP produced remains elevated for hours after injury. The relationship of microglial migration to axon outgrowth is discussed.
Learning & Memory | 2011
Qin Li; Brian D. Burrell
Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We examined plasticity following the pairing of spike trains in the touch mechanosensory neuron (T cell) and S interneuron (S cell) in the medicinal leech. Long-term potentiation (LTP) of T to S signaling was elicited when the T-cell spike train preceded the S-cell train. An interval 0 to +1 sec between the T- and S-cell spike trains was required to elicit long-term potentiation (LTP), and this potentiation was NMDA receptor (NMDAR)-dependent. Long-term depression (LTD) was elicited when S-cell activity preceded T-cell activity and the interval between the two spike trains was -0.2 sec to -10 sec. This surprisingly broad temporal window involved two distinct cellular mechanisms; an NMDAR-mediated LTD (NMDAR-LTD) when the pairing interval was relatively brief (<-1 sec) and an endocannabinoid-mediated LTD (eCB-LTD) when longer pairing intervals were used (-1 to -10 sec). This eCB-LTD also required activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor, presynaptic Ca(2+) release from intracellular stores and activation of voltage-gated Ca(2+) channels (VGCCs). These findings demonstrate that the pairing of spike trains elicits timing-dependent forms of LTP and LTD that are supported by a complex set of cellular mechanisms involving NMDARs and endocannabinoid activation of TRPV-like receptors.
The Journal of Neuroscience | 2013
Sharleen Yuan; Brian D. Burrell
Endocannabinoids (eCBs) play an important role in long-term regulation of synaptic signaling in both vertebrates and invertebrates. In this study, the role of transcription- and translation-dependent processes in presynaptic versus postsynaptic neurons was examined during eCB-mediated synaptic plasticity in the CNS of the leech. Low-frequency stimulation (LFS) of non-nociceptive afferents elicits eCB-dependent long-term depression (eCB–LTD) heterosynaptically in nociceptive synapses that lasts at least 2 h. Bath application of emetine, a protein synthesis inhibitor, blocked eCB–LTD after afferent LFS or exogenous eCB application, indicating that this depression was translation dependent. Bath application of actinomycin D, an irreversible RNA synthesis inhibitor, or 5,6-dichlorobenzimidazole 1-β-d-ribofurandoside (DRB), a reversible RNA synthesis inhibitor, also prevented eCB–LTD. Selective injection of DRB or emetine into the presynaptic or postsynaptic neuron before LFS indicated that eCB–LTD required transcription and translation in the postsynaptic neuron but only translation in the presynaptic cell. Depression observed immediately after LFS was also blocked when these transcription- and translation-dependent processes were inhibited. It is proposed that induction of eCB–LTD in this nociceptive synapse requires the coordination of presynaptic protein synthesis and postsynaptic mRNA and protein synthesis. These findings provide significant insights into both eCB-based synaptic plasticity and understanding how activity in non-nociceptive afferents modulates nociceptive pathways.
Molecular Pain | 2013
Alexandra Higgins; Sharleen Yuan; Yanqing Wang; Brian D. Burrell
BackgroundAlthough a number of clinical and preclinical studies have demonstrated analgesic effects of cannabinoid treatments, there are also instances when cannabinoids have had no effect or even exacerbated pain. The observed pro-nociceptive effects appear to be due to cannabinoid-induced disinhibition of afferent synaptic input to nociceptive circuits. To better understand how cannabinoid-mediated plasticity can have both pro- and anti-nociceptive effects, we examined the possibility that cannabinoids differentially modulate nociceptive vs. non-nociceptive synapses onto a shared postsynaptic target. These experiments were carried out in the central nervous system (CNS) of the medicinal leech, in which it is possible to intracellularly record from presynaptic nociceptive (N-cell) or pressure-sensitive (P-cell) neurons and their shared postsynaptic targets.ResultsThe endocannabinoid 2-arachidonoyl glycerol (2AG) elicited significant long-lasting depression in nociceptive (N-cell) synapses. However, non-nociceptive (P-cell) synapses were potentiated following 2AG treatment. 2AG-induced potentiation of non-nociceptive synapses was blocked by the TRPV antagonist SB366791, suggesting involvement of the same TRPV-like receptor that has already been shown to mediate endocannabinoid-dependent depression in nociceptive inputs. Treatment with the GABA receptor antagonist bicuculline also blocked 2AG-induced potentiation, consistent with the idea that increased synaptic signaling was the result of endocannabinoid-mediated disinhibition. Interestingly, while bicuculline by itself increased non-nociceptive synaptic transmission, nociceptive synapses were depressed by this GABA receptor antagonist indicating that nociceptive synapses were actually excited by GABAergic input. Consistent with these observations, GABA application depolarized the nociceptive afferent and hyperpolarized the non-nociceptive afferent.ConclusionsThese findings show that endocannabinoids can differentially modulate nociceptive vs. non-nociceptive synapses and that GABAergic regulation of these synapses plays an important role in determining whether endocannabinoids have a potentiating or depressing effect.
Journal of Neurophysiology | 2013
Sharleen Yuan; Brian D. Burrell
Previously, low-frequency stimulation (LFS) of a nonnociceptive touch-sensitive neuron has been found to elicit endocannabinoid-dependent long-term depression (eCB-LTD) in nociceptive synapses in the leech central nervous system (CNS) that requires activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor by postsynaptically synthesized 2-arachidonoyl glycerol (2-AG). This capacity of nonnociceptive afferent activity to reduce nociceptive signaling resembles gate control of pain, albeit longer lasting in these synaptic experiments. Since eCB-LTD has been observed at a single sensory-motor synapse, this study examines the functional relevance of this mechanism, specifically whether this form of synaptic plasticity has similar effects at the behavioral level in which additional, intersegmental neural circuits are engaged. Experiments were carried out using a semi-intact preparation that permitted both synaptic recordings and monitoring of the leech whole body shortening, a defensive withdrawal reflex that was elicited via intracellular stimulation of a single nociceptive neuron (the N cell). The same LFS of a nonnociceptive afferent that induced eCB-LTD in single synapses also produced an attenuation of the shortening reflex. Similar attenuation of behavior was also observed when 2-AG was applied. LFS-induced behavioral and synaptic depression was blocked by tetrahydrolipstatin (THL), a diacylglycerol lipase inhibitor, and by SB366791, a TRPV1 antagonist. The effects of both THL and SB366791 were observed following either bath application of the drug or intracellular injection into the presynaptic (SB366791) or postsynaptic (THL) neuron. These findings demonstrate a novel, endocannabinoid-based mechanism by which nonnociceptive afferent activity may modulate nocifensive behaviors via action on primary afferent synapses.
Brain Research | 2012
Sharleen Yuan; Brian D. Burrell
Activity in non-nociceptive afferents is known to produce long-lasting decreases in nociceptive signaling, often referred to as gate control, but the cellular mechanisms mediating this form of neuroplasticity are poorly understood. In the leech, activation of non-nociceptive touch (T) mechanosensory neurons induces a heterosynaptic depression of nociceptive (N) synapses that is endocannabinoid-dependent. This heterosynaptic, endocannabinoid-dependent long-term depression (ecLTD) is observed where the T- and N-cells converge on a common postsynaptic target, in this case the motor neuron that innervates the longitudinal muscles (L-cells) that contributes to a defensive withdrawal reflex. Depression in the nociceptive synapse required both presynaptic and postsynaptic increases in intracellular Ca²⁺. Activation of the Ca²⁺-sensitive protein phosphatase calcineurin was also required, but only in the presynaptic neuron. Heterosynaptic ecLTD was unaffected by antagonists for NMDA or metabotropic glutamate receptors, but was blocked by the 5-HT₂ receptor antagonist ritanserin. Depression was also blocked by the CB1 receptor antagonist rimonabant, but this is thought to represent an effect on a TRPV-like receptor. This heterosynaptic, endocannabinoid-dependent modulation of nociceptive synapses represents a novel mechanism for regulating how injury-inducing or painful stimuli are transmitted to the rest of the central nervous system.
Brain Research | 2008
Qin Li; Brian D. Burrell
Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and glutamatergic components of these synapses and this LTD was blocked by SVKI. GYKI 52466, a selective non-competitive antagonist of AMPA receptors, did not affect the electrical EPSP, although it did block the glutamatergic component of these synapses. CNQX did not affect non-rectifying electrical synapses in two different pairs of neurons. These results suggest an interaction between AMPA-type glutamate receptors and the gap junction proteins that mediate electrical synaptic transmission. This putative interaction between glutamate receptors and gap junction proteins represents a novel mechanism for regulating the strength of synaptic transmission.