Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian D. Shaw is active.

Publication


Featured researches published by Brian D. Shaw.


Eukaryotic Cell | 2005

Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge.

Steven D. Harris; Nick D. Read; Robert W. Roberson; Brian D. Shaw; Stephan Seiler; Mike Plamann; Michelle Momany

The impact of filamentous fungi on human welfare has never been greater. Fungi are acknowledged as the most economically devastating plant pathogens ([1][1]) and are attaining increasing notoriety for their ability to cause life-threatening infections in humans ([57][2], [71][3]), and fungal


Molecular Microbiology | 2008

The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans.

Srijana Upadhyay; Brian D. Shaw

Filamentous fungi are ideal systems to study the process of polarized growth, as their life cycle is dominated by hyphal growth exclusively at the cell apex. The actin cytoskeleton plays an important role in this growth. Until now, there have been no tools to visualize actin or the actin‐binding protein fimbrin in live cells of a filamentous fungus. We investigated the roles of actin (ActA) and fimbrin (FimA) in hyphal growth in Aspergillus nidulans. We examined the localization of ActA::GFP and FimA::GFP in live cells, and each displayed a similar localization pattern. In actively growing hyphae, cortical ActA::GFP and FimA::GFP patches were highly mobile throughout the hypha and were concentrated near hyphal apices. A patch‐depleted zone occupied the apical 0.5 μm of growing hypha. Both FimA::GFP and Act::GFP also localize transiently to septa. Movement and later localization of both was compromised after cytochalasin treatment. Disruption of fimA resulted in delayed polarity establishment during conidium germination, abnormal hyphal growth and endocytosis defects in apolar cells. Endocytosis was severely impaired in apolar fimA disruption cells. Our data support a novel apical recycling model which indicates a critical role for actin patch‐mediated endocytosis to maintain polarized growth at the apex.


PLOS Pathogens | 2008

RNAi Screen of Endoplasmic Reticulum–Associated Host Factors Reveals a Role for IRE1α in Supporting Brucella Replication

Qing-Ming Qin; Jianwu Pei; Veronica Ancona; Brian D. Shaw; Thomas A. Ficht; Paul de Figueiredo

Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1α−/− murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1α, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.


PLOS Pathogens | 2012

The Cyclase-Associated Protein Cap1 Is Important for Proper Regulation of Infection-Related Morphogenesis in Magnaporthe oryzae

Xiaoying Zhou; Haifeng Zhang; Guotian Li; Brian D. Shaw; Jin-Rong Xu

Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1 ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1 ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated.


Eukaryotic Cell | 2008

Aspergillus nidulans ArfB Plays a Role in Endocytosis and Polarized Growth

Soo Chan Lee; Sabrina N. Schmidtke; Lawrence J. Dangott; Brian D. Shaw

ABSTRACT Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension.


Eukaryotic Cell | 2002

Aspergillus nidulans swoF Encodes an N-Myristoyl Transferase

Brian D. Shaw; Cory Momany; Michelle Momany

ABSTRACT Polar growth is a fundamental process in filamentous fungi and is necessary for disease initiation in many pathogenic systems. Previously, swoF was identified in Aspergillusnidulans as a single-locus, temperature-sensitive (ts) mutant aberrant in both polarity establishment and polarity maintenance. The swoF gene was cloned by complementation of the ts phenotype and sequenced. The derived protein sequence had high identity with N-myristoyl transferases (NMTs) found in fungi, plants, and animals. In addition, wild-type growth at restrictive temperature was partially restored by the addition of myristic acid to the growth medium. Sequencing revealed that the mutation in swoF changes the conserved aspartic acid 369 to a tyrosine. The predicted A. nidulans SwoF protein, SwoFp, was homology modeled based on crystal structures of NMTs from Saccharomycescerevisiae and Candidaalbicans. The D369Y swoF mutation is on the opposite face of the protein, distal to the myristoyl coenzyme A and peptide substrate binding sites. In wild-type NMTs, D369 appears to stabilize a structural β-strand bend through two hydrogen bonds and an ionic interaction. These stabilizing bonds are abolished in the D369Y mutant. We hypothesize that a substrate of SwoFp must be myristoylated for proper polarity establishment and maintenance. The mutation prevents the proper function of SwoFp at restrictive temperature and thus blocks polar growth.


Genetics | 2010

Temporal and Spatial Regulation of Gene Expression During Asexual Development of Neurospora crassa

Charles J. Greenwald; Takao Kasuga; N. Louise Glass; Brian D. Shaw; Daniel J. Ebbole; Heather H. Wilkinson

In this study we profiled spatial and temporal transcriptional changes during asexual sporulation in the filamentous fungus Neurospora crassa. Aerial tissue was separated from the mycelium to allow detection of genes specific to each tissue. We identified 2641 genes that were differentially expressed during development, which represents ∼25% of the predicted genes in the genome of this model fungus. On the basis of the distribution of functional annotations of 1102 of these genes, we identified gene expression patterns that define key physiological events during conidial development. Not surprisingly, genes encoding transcription factors, cell wall remodeling proteins, and proteins involved in signal transduction were differentially regulated during asexual development. Among the genes differentially expressed in aerial tissues the majority were unclassified and tended to be unique to ascomycete genomes. This finding is consistent with the view that these genes evolved for asexual development in the Pezizomycotina. Strains containing deletions of several differentially expressed genes encoding transcription factors exhibited asexual development-associated phenotypes. Gene expression patterns during asexual development suggested that cAMP signaling plays a critical role in the transition from aerial growth to proconidial chain formation. This observation prompted us to characterize a deletion of the gene encoding a high-affinity cAMP phosphodiesterase (NCU00478). NCU00478 was determined to be allelic to aconidiate-2, a previously identified genetic locus controlling conidiation.


Fungal Genetics and Biology | 2010

Aspergillus nidulans striatin (StrA) mediates sexual development and localizes to the endoplasmic reticulum

Chih-Li Wang; Won-Bo Shim; Brian D. Shaw

Striatin family proteins have been identified in animals and fungi and are considered to be scaffolding proteins. In fungi striatin orthologs have been associated with sexual development and virulence to plants. In this study, we characterized the functions and localization of the striatin ortholog, StrA, in Aspergillus nidulans. deltastrA strains showed multiple defects in conidium germination, mycelial radial growth, production of diffusible red pigment, and reduced conidiation. The most striking phenotype is the production of abnormally small cleistothecia that are defective in ascosporogenesis. Over-expression of strA enhanced cleistothecium development and increased the production of Hülle cells in shaking liquid cultures. In addition, we generated strains expressing StrA::eGFP under the endogenous promoter. By co-labeling with FM4-64 and co-localization with nuclear localized StuA(NLS)::DsRed or CxnA (an endoplasmic reticulum marker), we determined that StrA mainly localizes to endoplasmic reticulum and the nuclear envelope.


Molecular Microbiology | 2015

Aspergillus nidulans flippase DnfA is cargo of the endocytic collar and plays complementary roles in growth and phosphatidylserine asymmetry with another flippase, DnfB

Zachary Schultzhaus; Huijuan Yan; Brian D. Shaw

Endocytosis and exocytosis are strictly segregated at the ends of hyphal cells of filamentous fungi, with a collar of endocytic activity encircling the growing cell tip, which elongates through directed membrane fusion. It has been proposed that this separation supports an endocytic recycling pathway that maintains polar localization of proteins at the growing apex. In a search for proteins in the filamentous fungus Aspergillus nidulans that possess an NPFxD motif, which signals for endocytosis, a Type 4 P‐Type ATPase was identified and named DnfA. Interestingly, NPFxD is at a different region of DnfA than the same motif in the Saccharomyces cerevisiae ortholog, although endocytosis is dependent on this motif for both proteins. DnfA is involved in asexual sporulation and polarized growth. Additionally, it is segregated within the Spitzenkörper from another Type 4 P‐type ATPase, DnfB. Next, the phosphatidylserine marker GFP::Lact‐C2 was expressed in growing hyphae, which revealed that this phospholipid is enriched on the cytosolic face of secretory vesicles. This distribution is affected by deleting either dnfA or dnfB. These findings provide evidence for the spatial and temporal segregation of Type4‐ATPases in filamentous fungi, and the asymmetric distribution of phosphatidylserine to the Spitzenkörper in A. nidulans.


Mycologia | 2006

Generality of the prerequisite of conidium attachment to a hydrophobic substratum as a signal for germination among Phyllosticta species

Brian D. Shaw; George C. Carroll; Harvey C. Hoch

It has been shown that conidia of Phyllosticta ampelicida require attachment to a substratum to initiate germination. Furthermore this attachment occurs only on hydrophobic surfaces. This study was initiated to ascertain the breadth of this phenomenon among other species of the genus Phyllosticta. We tested 23 isolates of Phyllosticta representing at least 14 named species. These isolates were collected from North America, Asia and Africa. For 22 of the 23 isolates tested spore attachment occurred at a rate of 60–100% on hydrophobic polystyrene but at 0–5% on hydrophilic polystyrene. The one exception to the preference for a hydrophobic substratum for attachment was an unnamed species of Phyllosticta from Rhus glauca that attached less than 10% on either surface. A similar response was observed when assaying germination and appressorium formation for 17 isolates. Germination and appressorium formation for these isolates proceeded on hydrophobic polystyrene but not on nutrient agar, which is hydrophilic. In five of the tested isolates germination was high on both hydrophobic polystyrene and hydrophilic nutrient media. The isolate from Rhus glauca did not germinate appreciably on either surface. Taken together these results suggest that the requirement for conidium contact/attachment to trigger germination is pervasive to the genus Phyllosticta.

Collaboration


Dive into the Brian D. Shaw's collaboration.

Researchain Logo
Decentralizing Knowledge