Brian D. Southern
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian D. Southern.
Journal of Clinical Investigation | 2014
Shaik O. Rahaman; Lisa M. Grove; Sailaja Paruchuri; Brian D. Southern; Kathryn A. Niese; Rachel G. Scheraga; Sudakshina Ghosh; Charles K. Thodeti; David X. Zhang; Magdalene M. Moran; William P. Schilling; Daniel J. Tschumperlin; Mitchell A. Olman
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disorder with no effective medical treatments available. The generation of myofibroblasts, which are critical for fibrogenesis, requires both a mechanical signal and activated TGF-β; however, it is not clear how fibroblasts sense and transmit the mechanical signal(s) that promote differentiation into myofibroblasts. As transient receptor potential vanilloid 4 (TRPV4) channels are activated in response to changes in plasma membrane stretch/matrix stiffness, we investigated whether TRPV4 contributes to generation of myofibroblasts and/or experimental lung fibrosis. We determined that TRPV4 activity is upregulated in lung fibroblasts derived from patients with IPF. Moreover, TRPV4-deficient mice were protected from fibrosis. Furthermore, genetic ablation or pharmacological inhibition of TRPV4 function abrogated myofibroblast differentiation, which was restored by TRPV4 reintroduction. TRPV4 channel activity was elevated when cells were plated on matrices of increasing stiffness or on fibrotic lung tissue, and matrix stiffness-dependent myofibroblast differentiation was reduced in response to TRVP4 inhibition. TRPV4 activity modulated TGF-β1-dependent actions in a SMAD-independent manner, enhanced actomyosin remodeling, and increased nuclear translocation of the α-SMA transcription coactivator (MRTF-A). Together, these data indicate that TRPV4 activity mediates pulmonary fibrogenesis and suggest that manipulation of TRPV4 channel activity has potential as a therapeutic approach for fibrotic diseases.
Journal of Immunology | 2016
Rachel G. Scheraga; Kathryn A. Niese; Brian D. Southern; Lisa M. Grove; Hite Rd; Christine McDonald; Thomas A. Hamilton; Mitchell A. Olman
Macrophage phagocytosis of particles and pathogens is an essential aspect of innate host defense. Phagocytic function requires cytoskeletal rearrangements that depend on the interaction between macrophage surface receptors, particulates/pathogens, and the extracellular matrix. In the present study we determine the role of a mechanosensitive ion channel, transient receptor potential vanilloid 4 (TRPV4), in integrating the LPS and matrix stiffness signals to control macrophage phenotypic change for host defense and resolution from lung injury. We demonstrate that active TRPV4 mediates LPS-stimulated murine macrophage phagocytosis of nonopsonized particles (Escherichia coli) in vitro and opsonized particles (IgG-coated latex beads) in vitro and in vivo in intact mice. Intriguingly, matrix stiffness in the range seen in inflamed or fibrotic lung is required to sensitize the TRPV4 channel to mediate the LPS-induced increment in macrophage phagocytosis. Furthermore, TRPV4 is required for the LPS induction of anti-inflammatory/proresolution cytokines. These findings suggest that signaling through TRPV4, triggered by changes in extracellular matrix stiffness, cooperates with LPS-induced signals to mediate macrophage phagocytic function and lung injury resolution. These mechanisms are likely to be important in regulating macrophage function in the context of pulmonary infection and fibrosis.
Journal of Biological Chemistry | 2014
Lisa M. Grove; Brian D. Southern; Tong H. Jin; Kimberly E. White; Sailaja Paruchuri; Efrat Harel; Ying Wei; Shaik O. Rahaman; Candece L. Gladson; Qiang Ding; Charles S. Craik; Harold A. Chapman; Mitchell A. Olman
Background: Fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) overexpress the urokinase-type plasminogen activator receptor (uPAR) and are hypermotile. Results: uPAR ligation increases fibroblast motility by localizing α5β1 integrin-Fyn signaling complexes to lipid rafts. Conclusion: The hypermotile phenotype of IPF fibroblasts is due to lipid raft-localized uPAR-integrin-Fyn signaling complexes. Significance: These unique lipid raft signals may be therapeutic targets for IPF. The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.
Journal of Biological Chemistry | 2016
Brian D. Southern; Lisa M. Grove; Shaik O. Rahaman; Rachel G. Scheraga; Kathryn A. Niese; Huanxing Sun; Erica L. Herzog; Fei Liu; Daniel J. Tschumperlin; Thomas T. Egelhoff; Steven S. Rosenfeld; Mitchell A. Olman
Pro-fibrotic mesenchymal cells are known to be the key effector cells of fibroproliferative disease, but the specific matrix signals and the induced cellular responses that drive the fibrogenic phenotype remain to be elucidated. The key mediators of the fibroblast fibrogenic phenotype were characterized using a novel assay system that measures fibroblast behavior in response to actual normal and fibrotic lung tissue. Using this system, we demonstrate that normal lung promotes fibroblast motility and polarization, while fibrotic lung immobilizes the fibroblast and promotes myofibroblast differentiation. These context-specific phenotypes are surprisingly both mediated by myosin II. The role of myosin II is supported by the observation of an increase in myosin phosphorylation and a change in intracellular distribution in fibroblasts on fibrotic lung, as compared with normal lung. Moreover, loss of myosin II activity has opposing effects on protrusive activity in fibroblasts on normal and fibrotic lung. Loss of myosin II also selectively inhibits myofibroblast differentiation in fibroblasts on fibrotic lung. Importantly, these findings are recapitulated by varying the matrix stiffness of polyacrylamide gels in the range of normal and fibrotic lung tissue. Comparison of the effects of myosin inhibition on lung tissue with that of polyacrylamide gels suggests that matrix fiber organization drives the fibroblast phenotype under conditions of normal/soft lung, while matrix stiffness drives the phenotype under conditions of fibrotic/stiff lung. This work defines novel roles for myosin II as a key regulatory effector molecule of the pro-fibrotic phenotype, in response to biophysical properties of the matrix.
Frontiers in Immunology | 2017
Rachel G. Scheraga; Brian D. Southern; Lisa M. Grove; Mitchell A. Olman
Ion channels/pumps are essential regulators of organ homeostasis and disease. In the present review, we discuss the role of the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), in cytokine secretion and pulmonary inflammatory diseases such as asthma, cystic fibrosis (CF), and acute lung injury/acute respiratory distress syndrome (ARDS). TRPV4 has been shown to play a role in lung diseases associated with lung parenchymal stretch or stiffness. TRPV4 indirectly mediates hypotonicity-induced smooth muscle contraction and airway remodeling in asthma. Further, the literature suggests that in CF TRPV4 may improve ciliary beat frequency enhancing mucociliary clearance, while at the same time increasing pro-inflammatory cytokine secretion/lung tissue injury. Currently it is understood that the role of TRPV4 in immune cell function and associated lung tissue injury/ARDS may depend on the injury stimulus. Uncovering the downstream mechanisms of TRPV4 action in pulmonary inflammatory diseases is likely important to understanding disease pathogenesis and may lead to novel therapeutics.
Cleveland Clinic Journal of Medicine | 2018
Leslie B. Tolle; Brian D. Southern; Daniel A. Culver; Jeffrey C. Horowitz
Idiopathic pulmonary fibrosis (IPF) is a specific type of fibrosing interstitial pneumonia of unknown cause. It is usually chronic and progressive, tends to affect mainly adults over age 60, has a predilection for men, and is often fatal. The condition is still underappreciated by pulmonologists and primary care physicians. This article attempts to close that information gap by reviewing the natural course of IPF and presenting an algorithmic approach to diagnosis and treatment based on evidence-based international guidelines. New treatment options are briefly discussed, to raise awareness of new medications that target pulmonary fibrosis. This devastating and fatal lung disease generally affects older adults, especially men, and can be mistaken for COPD.
American Journal of Respiratory Cell and Molecular Biology | 2017
Brian D. Southern; Rachel G. Scheraga; Mitchell A. Olman
Annals of the American Thoracic Society | 2015
Shaik O. Rahaman; Lisa M. Grove; Brian D. Southern; Rachel G. Scheraga; Kathryn A. Niese; Sudakshina Ghosh; Daniel J. Tschumperlin; Mitchell A. Olman
american thoracic society international conference | 2012
Brian D. Southern; Amanda Metzger; Lisa M. Dominak; Sailaja Paruchuri; Mitchell A. Olman
american thoracic society international conference | 2012
Shaik-Ohidar Rahaman; Sailaja Paruchuri; Charles K. Thodeti; Lisa M. Dominak; Brian D. Southern; Amanda Metzger; Mitchell A. Olman