Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian D. Wardlow is active.

Publication


Featured researches published by Brian D. Wardlow.


Geophysical Research Letters | 2007

A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States

Yingxin Gu; Jesslyn F. Brown; James P. Verdin; Brian D. Wardlow

Received 18 December 2006; revised 16 February 2007; accepted 28 February 2007; published 27 March 2007. [1] A five-year (2001–2005) history of moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data was analyzed for grassland drought assessment within the central United States, specifically for the Flint Hills of Kansas and Oklahoma. Initial results show strong relationships among NDVI, NDWI, and drought conditions. During the summer over the Tallgrass Prairie National Preserve, the average NDVI and NDWI were consistently lower (NDVI 0.6 and NDWI>0.4). NDWI values exhibited a quicker response to drought conditions than NDVI. Analysis revealed that combining information from visible, near infrared, and short wave infrared channels improved sensitivity to drought severity. The proposed normalized difference drought index (NDDI) had a stronger response to summer drought conditions than a simple difference between NDVI and NDWI, and is therefore a more sensitive indicator of drought in grasslands than NDVI alone.Citation: Gu, Y., J. F. Brown, J. P. Verdin, and B. Wardlow (2007), A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States, Geophys. Res. Lett., 34, L06407, doi:10.1029/ 2006GL029127.


Giscience & Remote Sensing | 2008

The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation

Jesslyn F. Brown; Brian D. Wardlow; Tsegaye Tadesse; Michael J. Hayes; Bradley C. Reed

The development of new tools that provide timely, detailed-spatial-resolution drought information is essential for improving drought preparedness and response. This paper presents a new method for monitoring drought-induced vegetation stress called the Vegetation Drought Response Index (VegDRI). VegDRI integrates traditional climate-based drought indicators and satellite-derived vegetation index metrics with other biophysical information to produce a 1 km map of drought conditions that can be produced in near-real time. The initial VegDRI map results for a 2002 case study conducted across seven states in the north-central United States illustrates the utility of VegDRI for improved large-area drought monitoring.


Journal of Climate | 2011

Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States

Martha C. Anderson; Christopher R. Hain; Brian D. Wardlow; Agustin Pimstein; John R. Mecikalski; William P. Kustas

AbstractThe reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based moisture inputs to the land surface system (e.g., irrigation) that may temper drought impacts or variable rates of water consumption across a landscape. This study assesses the value of a new drought index based on remote sensing of evapotranspiration (ET). The evaporative stress index (ESI) quantifies anomalies in the ratio of actual to potential ET (PET), mapped using thermal band imagery from geostationary satellites. The study investigates the behavior and response time scales of the ESI through a retrospective comparison with the standardized precipitation indices and Palmer drought index suite, and with drought classifications recorded in the U.S. Drought Monitor for the 2000–0...


Reviews of Geophysics | 2015

Remote sensing of drought: Progress, challenges and opportunities

Amir AghaKouchak; Alireza Farahmand; F. S. Melton; J. Teixeira; Martha C. Anderson; Brian D. Wardlow; Christopher R. Hain

This review surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. We argue that satellite observations not currently used for operational drought monitoring, such as near-surface air relative humidity data from the Atmospheric Infrared Sounder mission, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi-indicator drought models. While there are immense opportunities, there are major challenges including data continuity, unquantified uncertainty, sensor changes, and community acceptability. One of the major limitations of many of the currently available satellite observations is their short length of record. A number of relevant satellite missions and sensors (e.g., the Gravity Recovery and Climate Experiment) provide only a decade of data, which may not be sufficient to study droughts from a climate perspective. However, they still provide valuable information about relevant hydrologic and ecological processes linked to this natural hazard. Therefore, there is a need for models and algorithms that combine multiple data sets and/or assimilate satellite observations into model simulations to generate long-term climate data records. Finally, the study identifies a major gap in indicators for describing drought impacts on the carbon and nitrogen cycle, which are fundamental to assessing drought impacts on ecosystems.


Photogrammetric Engineering and Remote Sensing | 2006

Using USDA Crop Progress Data for the Evaluation of Greenup Onset Date Calculated from MODIS 250-Meter Data

Brian D. Wardlow; Jude H. Kastens; Stephen L. Egbert

Identification of the onset of vegetation greenup is a key factor in characterizing and monitoring vegetation dynamics over large areas. However, the relationship between greenup onset dates estimated from satellite imagery and the actual growth stage of vegetation is often unclear. Herein, we present an approach for comparing pixel-level onset dates to regional planting and emergence information for agricultural crops, with the goal of drawing reliable conclusions regarding the physical growth stage of the vegetation of interest at the time of greenup onset. To accomplish this, we calculated onset of greenup using MODIS 250 m, 16-day composite NDVI time series data for Kansas for 2001 and a recently proposed methodology for greenup detection. We then evaluated the estimated greenup dates using the locations of 1,417 large field sites that were planted to corn, soybeans, or sorghum in 2001, in conjunction with United States Department of Agriculture (USDA) weekly crop progress reports containing crop planting and emergence percentage estimates. Average greenup onset dates calculated for the three summer crops showed that the dates were consistent with the relative planting order of corn, sorghum, and soybeans across the state. However, the influence of pre-crop vegetation (weeds and “volunteer” crops) introduced an early bias for the greenup onset dates calculated for many field sites. This pre-crop vegetation signal was most pronounced for the later planted summer crops (soybeans and sorghum) and in areas of Kansas that receive higher annual precipitation. The most reliable results were obtained for corn in semi-arid western Kansas, where pre-crop vegetation had considerably less influence on the greenup onset date calculations. The greenup onset date calculated for corn in western Kansas was found to occur 23 days after 50 percent of the crop had emerged. Corn’s greenup onset was detected, on average, at the agronomic stage where plants are 15 to 45 cm (6 to 18 inches) tall and the crop begins its rapid growth.


Journal of Hydrometeorology | 2013

An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications

Martha C. Anderson; Christopher R. Hain; Jason A. Otkin; Xiwu Zhan; Kingtse C. Mo; Mark Svoboda; Brian D. Wardlow; Agustin Pimstein

AbstractComparison of multiple hydrologic indicators, derived from independent data sources and modeling approaches, may improve confidence in signals of emerging drought, particularly during periods of rapid onset. This paper compares the evaporative stress index (ESI)—a diagnostic fast-response indicator describing evapotranspiration (ET) deficits derived within a thermal remote sensing energy balance framework—with prognostic estimates of soil moisture (SM), ET, and runoff anomalies generated with the North American Land Data Assimilation System (NLDAS). Widely used empirical indices based on thermal remote sensing [vegetation health index (VHI)] and precipitation percentiles [standardized precipitation index (SPI)] were also included to assess relative performance. Spatial and temporal correlations computed between indices over the contiguous United States were compared with historical drought classifications recorded in the U.S. Drought Monitor (USDM). Based on correlation results, improved forms for...


Giscience & Remote Sensing | 2007

Multitemporal, Moderate-Spatial-Resolution Remote Sensing of Modern Agricultural Production and Land Modification in the Brazilian Amazon

J. C. Brown; W. E. Jepson; Jude H. Kastens; Brian D. Wardlow; J. M. Lomas; Kevin P. Price

We present an extensive review of the literature on remote sensing and land change in Amazonia as part of a call for new methods to study the recent expansion of mechanized annual cropping. Following the review is a presentation of the use of multitemporal Moderate Resolution Imaging Spectroradiometer (MODIS) 250-meter Vegetation Index (VI) data to study processes of intensification of mechanized agriculture in Vilhena, Rondônia, Brazil, an Amazonian soy-producing municipality. The case study shows that the high temporal resolution and moderate spatial resolution of the MODIS VI data hold promise for acquiring information necessary to answer important questions about mechanized agriculture and its relationship to deforestation.


Journal of remote sensing | 2010

A comparison of MODIS 250-m EVI and NDVI data for crop mapping: a case study for southwest Kansas

Brian D. Wardlow; Stephen L. Egbert

Multi-temporal vegetation index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are becoming widely used for large-area crop classification. Most crop-mapping studies have applied enhanced vegetation index (EVI) data from MODIS instead of the more traditional normalized difference vegetation index (NDVI) data because of atmospheric and background corrections incorporated into EVIs calculation and the indexs sensitivity over high biomass areas. However, the actual differences in the classification results using EVI versus NDVI have not been thoroughly explored. This study evaluated time-series MODIS 250-m EVI and NDVI for crop-related land use/land cover (LULC) classification in the US Central Great Plains. EVI- and NDVI-derived maps classifying general crop types, summer crop types and irrigated/non-irrigated crops were produced for southwest Kansas. Qualitative and quantitative assessments were conducted to determine the thematic accuracy of the maps and summarize their classification differences. For the three crop maps, MODIS EVI and NDVI data produced equivalent classification results. High thematic accuracies were achieved with both indices (generally ranging from 85% to 90%) and classified cropping patterns were consistent with those reported for the study area (> 0.95 correlation between the classified and USDA-reported crop areas). Differences in thematic accuracy (< 3% difference), spatially depicted patterns (> 90% pixel-level thematic agreement) and classified crop areas between the series of EVI- and NDVI-derived maps were negligible. Most thematic disagreements were restricted to single pixels or small clumps of pixels in transitional areas between cover types. Analysis of MODIS composite period usage in the classification models also revealed that both VIs performed equally well when periods from a specific growing season phase (green, peak or senescence) were heavily utilized to generate a specific crop map.


Climatic Change | 2013

Consequences of climate change for the soil climate in Central Europe and the central plains of the United States

Miroslav Trnka; Kurt Christian Kersebaum; Josef Eitzinger; Michael J. Hayes; Petr Hlavinka; Mark Svoboda; Martin Dubrovský; Daniela Semerádová; Brian D. Wardlow; Eduard Pokorný; Martin Možný; Donald A. Wilhite; Zdeněk Žalud

This study aims to evaluate soil climate quantitatively under present and projected climatic conditions across Central Europe (12.1°–18.9° E and 46.8°–51.1° N) and the U.S. Central Plains (90°–104° W and 37°–49° N), with a special focus on soil temperature, hydric regime, drought risk and potential productivity (assessed as a period suitable for crop growth). The analysis was completed for the baselines (1961–1990 for Europe and 1985–2005 for the U.S.) and time horizons of 2025, 2050 and 2100 based on the outputs of three global circulation models using two levels of climate sensitivity. The results indicate that the soil climate (soil temperature and hydric soil regimes) will change dramatically in both regions, with significant consequences for soil genesis. However, the predicted changes of the pathways are very uncertain because of the range of future climate systems predicted by climate models. Nevertheless, our findings suggest that the risk of unfavourable dry years will increase, resulting in greater risk of soil erosion and lower productivity. The projected increase in the variability of dry and wet events combined with the uncertainty (particularly in the U.S.) poses a challenge for selecting the most appropriate adaptation strategies and for setting adequate policies. The results also suggest that the soil resources are likely be under increased pressure from changes in climate.


Ecosphere | 2010

Combined effects of heat waves and droughts on avian communities across the conterminous United States

Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Brian D. Wardlow; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

Increasing surface temperatures and climatic variability associated with global climate change are expected to produce more frequent and intense heat waves and droughts in many parts of the world. Our goal was to elucidate the fundamental, but poorly understood, effects of these extreme weather events on avian communities across the conterminous United States. Specifically, we explored: (1) the effects of timing and duration of heat and drought events, (2) the effects of jointly occurring drought and heat waves relative to these events occurring in isolation, and (3) how effects vary among functional groups related to nest location and migratory habit, and among ecoregions with differing precipitation and temperature regimes. Using data from remote sensing, meteorological stations, and the North American Breeding Bird Survey, we used mixed effects models to quantify responses of overall and functional group abundance to heat waves and droughts (occurring alone or in concert) at two key periods in the annual cycle of birds: breeding and post-fledging. We also compared responses among species with different migratory and nesting characteristics, and among 17 ecoregions of the conterminous United States. We found large changes in avian abundances related to 100-year extreme weather events occurring in both breeding and post-fledging periods, but little support for an interaction among time periods. We also found that jointly-, rather than individually-occurring heat waves and droughts were both more common and more predictive of abundance changes. Declining abundance was the only significant response to post-fledging events, while responses to breeding period events were larger but could be positive or negative. Negative responses were especially frequent in the western U.S., and among ground-nesting birds and Neotropical migrants, with the largest single-season declines (36%) occurring among ground-nesting birds in the desert Southwest. These results indicate the importance of functional traits, timing, and geography in determining avian responses to weather extremes. Because dispersal to other regions appears to be an important avian response, it may be essential to maintain habitat refugia in a more climatically variable future.

Collaboration


Dive into the Brian D. Wardlow's collaboration.

Top Co-Authors

Avatar

Tsegaye Tadesse

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Mark Svoboda

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Martha C. Anderson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael J. Hayes

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Hain

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jesslyn F. Brown

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Anatoly A. Gitelson

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew E. Suyker

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

James P. Verdin

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge