Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian D. Zoltowski is active.

Publication


Featured researches published by Brian D. Zoltowski.


Science | 2007

Conformational Switching in the Fungal Light Sensor Vivid

Brian D. Zoltowski; Carsten Schwerdtfeger; Joanne Widom; Jennifer J. Loros; Alexandrine M. Bilwes; Jay C. Dunlap; Brian R. Crane

The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).


Biochemistry | 2008

Light activation of the LOV protein Vivid generates a rapidly exchanging dimer

Brian D. Zoltowski; Brian R. Crane

The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.


Nature | 2011

Structure of full-length Drosophila cryptochrome

Brian D. Zoltowski; Anand T. Vaidya; Deniz Top; Joanne Widom; Michael W. Young; Brian R. Crane

The cryptochrome/photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to ultraviolet and blue light exposure in all kingdoms of life. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs) and 6-4 photolesions caused by ultraviolet radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalysed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable carboxy-terminal tail that appends the conserved PL homology domain (PHD) and is important for function. Here, we report a 2.3-Å resolution crystal structure of Drosophila CRY with an intact C terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp 536 juts into the CRY catalytic centre to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture and photochemistry can be elaborated into a range of light-driven functions.


Nature Chemical Biology | 2016

Optimized second-generation CRY2–CIB dimerizers and photoactivatable Cre recombinase

Amir Taslimi; Brian D. Zoltowski; Jose G Miranda; Gopal P. Pathak; Robert M. Hughes; Chandra L. Tucker

Arabidopsis thaliana cryptochrome 2 (AtCRY2), a light-sensitive photosensory protein, was previously adapted for use controling protein-protein interactions through light-dependent binding to a partner protein, CIB1. While the existing CRY2/CIB dimerization system has been used extensively for optogenetic applications, some limitations exist. Here, we set out to optimize function of the CRY2/CIB system, to identify versions of CRY2/CIB that are smaller, show reduced dark interaction, and maintain longer or shorter signaling states in response to a pulse of light. We describe minimal functional CRY2 and CIB1 domains maintaining light-dependent interaction and new signaling mutations affecting AtCRY2 photocycle kinetics. The latter work implicates a α13-α14 turn motif within plant CRYs where perturbations alter signaling state lifetime. Using a long-lived L348F photocycle mutant, we engineered a second generation photoactivatable Cre recombinase, PA-Cre2.0, that shows five-fold improved dynamic range allowing robust recombination following exposure to a single, brief pulse of light.


Journal of Molecular Biology | 2009

Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering.

Jessica S. Lamb; Brian D. Zoltowski; Suzette A. Pabit; Li Li; Brian R. Crane; Lois Pollack

The PAS-LOV domain is a signal-transducing component found in a large variety of proteins that is responsible for sensing different stimuli such as light, oxygen, and voltage. The LOV protein VVD regulates blue light responses in the filamentous fungi Neurospora crassa. Using photocoupled, time-resolved small-angle X-ray scattering, we extract the solution protein structure in both dark-adapted and light-activated states. Two distinct dark-adapted conformations are detected in the wild-type protein: a compact structure that corresponds to the crystal structure of the dark-state monomer as well as an extended structure that is well modeled by introducing conformational disorder at the N-terminus of the protein. These conformations are accentuated in carefully selected variants, in which a key residue for propagating structural transitions, Cys71, has been mutated or oxidized. Despite different dark-state conformations, all proteins form a common dimer in response to illumination. Taken together, these data support a reaction scheme that describes the mechanism for light-induced dimerization of VVD. Envelope reconstructions of the transient light-state dimer reveal structures that are best described by a parallel arrangement of subunits that have significantly changed conformation compared to the crystal structure.


Frontiers in molecular biosciences | 2015

LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling.

Ashutosh Pudasaini; Kaley K. El-Arab; Brian D. Zoltowski

The Light-Oxygen-Voltage domain family of proteins is widespread in biology where they impart sensory responses to signal transduction domains. The small, light responsive LOV modules offer a novel platform for the construction of optogenetic tools. Currently, the design and implementation of these devices is partially hindered by a lack of understanding of how light drives allosteric changes in protein conformation to activate diverse signal transduction domains. Further, divergent photocycle properties amongst LOV family members complicate construction of highly sensitive devices with fast on/off kinetics. In the present review we discuss the history of LOV domain research with primary emphasis on tuning LOV domain chemistry and signal transduction to allow for improved optogenetic tools.


Nature | 2013

Updated structure of Drosophila cryptochrome

Colin Levy; Brian D. Zoltowski; Alex R. Jones; Anand T. Vaidya; Deniz Top; Joanne Widom; Michael W. Young; Nigel S. Scrutton; Brian R. Crane; David Leys

Arising from B. D. Zoltowski et al. 480, 396–399 (2011)10.1038/nature10618Recently, we determined the X-ray crystal structure of full-length cryptochrome from Drosophila. Here we report an improved model of the Drosophila cryptochrome (dCRY) structure that corrects errors in the original coordinates (Protein Data Bank (PDB) accession 3TVS). Further refinement of the structure, with automated rebuilding algorithms in Phenix followed by manual building, indicated that a model of dCRY could be produced with excellent refinement statistics without taking into account the non-merohedral twinning originally reported (Table 1).


Journal of the American Chemical Society | 2008

Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle x-ray scattering

Jessica S. Lamb; Brian D. Zoltowski; Suzette A. Pabit; Brian R. Crane; Lois Pollack

Time-resolved small-angle X-ray scattering (SAXS) has been used to probe photoexcitation of the blue-light signal transduction protein Vivid (VVD). Laser excitation of sample in a continuous flow cell enables time-resolved measurement of the initial response of VVD to illumination. Good signal-to-noise is achieved without relying on multiple exposures of the same sample or limiting exposure times to prevent radiation damage. The SAXS data demonstrate that VVD dimerizes within tens of milliseconds of light-state activation. Time-resolved SAXS in a flow cell format is a general method for connecting chemical changes in photoreceptors to conformationally driven output signals.


Biochemistry | 2011

Variations in Protein–Flavin Hydrogen Bonding in a Light, Oxygen, Voltage Domain Produce Non-Arrhenius Kinetics of Adduct Decay

Brian D. Zoltowski; Abigail I. Nash; Kevin H. Gardner

Light, oxygen, voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine-tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark-state cleavage of the photochemically generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2, and ribityl hydroxyls and the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility, and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics.


Biochemistry | 2013

Blue light-induced dimerization of a bacterial LOV-HTH DNA-binding protein.

Brian D. Zoltowski; Laura B. Motta-Mena; Kevin H. Gardner

With their utilization of light-driven allostery to control biochemical activities, photosensory proteins are of great interest as model systems and novel reagents for use by the basic science and engineering communities. One such protein, the light-activated EL222 transcription factor, from the marine bacterium Erythrobacter litoralis HTCC2594, is appealing for such studies, as it harnesses blue light to drive the reorientation of light-oxygen-voltage (LOV) sensory and helix-turn-helix (HTH) effector domains to allow photoactivation of gene transcription in natural and artificial systems. The protein conformational changes required for this process are not well understood, in part because of the relatively short lifetime of the EL222 photoexcited state (τ ∼ 29 s), which complicates its characterization via certain biophysical methods. Here we report how we have circumvented this limitation by creating an EL222 variant harboring V41I, L52I, A79Q, and V121I point mutations (AQTrip) that stabilizes the photoactivated state. Using the wild-type and AQTrip EL222 proteins, we have probed EL222 activation using a combination of solution scattering, nuclear magnetic resonance (NMR), and electromobility shift assays. Size-exclusion chromatography and light scattering indicate that AQTrip oligomerizes in the absence of DNA and selects for an EL222 dimer-DNA complex in the presence of DNA substrates. These results are confirmed in wild-type EL222 with a high-affinity DNA-binding site that stabilizes the complex. NMR analyses of the EL222-DNA complex confirm a 2:1 stoichiometry in the presence of a previously characterized DNA substrate. Combined, these novel approaches have validated a key mechanistic step, whereby blue light induces EL222 dimerization through LOV and HTH interfaces.

Collaboration


Dive into the Brian D. Zoltowski's collaboration.

Top Co-Authors

Avatar

John A. Pojman

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin H. Gardner

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Ashutosh Pudasaini

Southern Methodist University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vitaly Volpert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deniz Top

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Jameela Lokhandwala

Southern Methodist University

View shared research outputs
Researchain Logo
Decentralizing Knowledge