Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian E. Fee is active.

Publication


Featured researches published by Brian E. Fee.


Oncogene | 2001

Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1

Christine M. Eischen; Graham Packham; John Nip; Brian E. Fee; Scott W. Hiebert; Gerard P. Zambetti; John L. Cleveland

Malignant transformation occurs in cells that overexpress c-Myc or that inappropriately activate E2F-1. Transformation occurs after the selection of cells that have acquired resistance to apoptosis that is triggered by these oncogenes, and a key mediator of this cell death process is the p53 tumor suppressor. In IL-3-dependent immortal 32D.3 myeloid cells the ARF/p53 apoptotic pathway is inactivated, as these cells fail to express ARF. Nonetheless, both c-Myc and E2F-1 overexpression accelerated apoptosis when these cells were deprived of IL-3. Here we report that c-Myc or E2F-1 overexpression suppresses Bcl-2 protein and RNA levels, and that restoration of Bcl-2 protein effectively blocks the accelerated apoptosis that occurs when c-Myc- or E2F-1-overexpressing cells are deprived of IL-3. Blocking p53 activity with mutant p53 did not abrogate E2F-1-induced suppression of Bcl-2. Analysis of immortal myeloid cells engineered to overexpress c-Myc and E2F-1 DNA binding mutants revealed that DNA binding activity of these oncoproteins is required to suppress Bcl-2 expression. These results suggest that the targeting of Bcl-2 family members is an important mechanism of oncogene-induced apoptosis, and that this occurs independent of the ARF/p53 pathway.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor

Yu Wang; Rashmi Chandra; Leigh Ann Samsa; Barry Gooch; Brian E. Fee; J. Michael Cook; Steven R. Vigna; Augustus O. Grant

Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release. However, the cellular mechanism by which amino acids affect CCK secretion is unknown. The Ca(2+)-sensing receptor (CaSR) that was originally identified on parathyroid cells is not only sensitive to extracellular Ca(2+) but is activated by extracellular aromatic amino acids. It has been postulated that this receptor may be involved in gastrointestinal hormone secretion. Using transgenic mice expressing a CCK promoter driven/enhanced green fluorescent protein (GFP) transgene, we have been able to identify and purify viable intestinal CCK cells. Intestinal mucosal CCK cells were enriched >200-fold by fluorescence-activated cell sorting. These cells were then used for real-time PCR identification of CaSR. Immunohistochemical staining with an antibody specific for CaSR confirmed colocalization of CaSR to CCK cells. In isolated CCK cells loaded with a Ca(2+)-sensitive dye, the amino acids phenylalanine and tryptophan, but not nonaromatic amino acids, caused an increase in intracellular Ca(2+) ([Ca(2+)](i)). The increase in [Ca(2+)](i) was blocked by the CaSR inhibitor Calhex 231. Phenylalanine and tryptophan stimulated CCK release from intestinal CCK cells, and this stimulation was also blocked by CaSR inhibition. Electrophysiological recordings from isolated CCK-GFP cells revealed these cells to possess a predominant outwardly rectifying potassium current. Administration of phenylalanine inhibited basal K(+) channel activity and caused CCK cell depolarization, consistent with changes necessary for hormone secretion. These findings indicate that amino acids have a direct effect on CCK cells to stimulate CCK release by activating CaSR and suggest that CaSR is the physiological mechanism through which amino acids regulate CCK secretion.


Molecular and Cellular Biology | 1997

E2F-1 cooperates with topoisomerase II inhibition and DNA damage to selectively augment p53-independent apoptosis.

John Nip; David K. Strom; Brian E. Fee; Gerard P. Zambetti; John L. Cleveland; Scott W. Hiebert

Mutations in the retinoblastoma (pRb) tumor suppressor pathway including its cyclin-cdk regulatory kinases, or cdk inhibitors, are a hallmark of most cancers and allow unrestrained E2F-1 transcription factor activity, which leads to unregulated G1-to-S-phase cell cycle progression. Moderate levels of E2F-1 overexpression are tolerated in interleukin 3 (IL-3)-dependent 32D.3 myeloid progenitor cells, yet this induces apoptosis when these cells are deprived of IL-3. However, when E2F activity is augmented by coexpression of its heterodimeric partner, DP-1, the effects of survival factors are abrogated. To determine whether enforced E2F-1 expression selectively sensitizes cells to cytotoxic agents, we examined the effects of chemotherapeutic agents and radiation used in cancer therapy. E2F-1 overexpression in the myeloid cells preferentially sensitized cells to apoptosis when they were treated with the topoisomerase II inhibitor etoposide. Although E2F-1 alone induces moderate levels of p53 and treatment with drugs markedly increased p53, the deleterious effects of etoposide in E2F-1-overexpressing cells were independent of p53 accumulation. Coexpression of Bcl-2 and E2F-1 in 32D.3 cells protected them from etoposide-mediated apoptosis. However, Bcl-2 also prevented apoptosis of these cells upon exposure to 5-fluorouracil and doxorubicin, which were also cytotoxic for control cells. Pretreating E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not damage DNA, protected the cells from etoposide-induced apoptosis. However, ICRF-193 cooperated with DNA-damaging agents to induce apoptosis. Therefore, topoisomerase II inhibition and DNA damage can cooperate to selectively induce p53-independent apoptosis in cells that have unregulated E2F-1 activity resulting from mutations in the pRb pathway.


Molecular Cancer Therapeutics | 2007

The combination of novel low molecular weight inhibitors of RAF (LBT613) and target of rapamycin (RAD001) decreases glioma proliferation and invasion

Anita B. Hjelmeland; Kathryn P. Lattimore; Brian E. Fee; Qing Shi; Sarah Wickman; Stephen T. Keir; Mark D. Hjelmeland; David Bryant Batt; Darell D. Bigner; Henry S. Friedman; Jeremy N. Rich

Monotherapies have proven largely ineffective for the treatment of glioblastomas, suggesting that increased patient benefit may be achieved by combining therapies. Two protumorigenic pathways known to be active in glioblastoma include RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT/target of rapamycin (TOR). We investigated the efficacy of a combination of novel low molecular weight inhibitors LBT613 and RAD001 (everolimus), which were designed to target RAF and TOR, respectively. LBT613 decreased phosphorylation of extracellular signal-regulated kinase 1 and 2, downstream effectors of RAF, in a human glioma cell line. RAD001 resulted in decreased phosphorylation of the TOR effector S6. To determine if targeting RAF and TOR activities could result in decreased protumorigenic glioma cellular behaviors, we evaluated the abilities of LBT613 and RAD001 to affect the proliferation, migration, and invasion of human glioma cells. Treatment with either LBT613 or RAD001 alone significantly decreased the proliferation of multiple human glioma cell lines. Furthermore, LBT613 and RAD001 in combination synergized to decrease glioma cell proliferation in association with G1 cell cycle arrest. Glioma invasion is a critical contributor to tumor malignancy. The combination of LBT613 and RAD001 inhibited the invasion of human glioma cells through Matrigel to a greater degree than treatment with either drug alone. These data suggest that the combination of LBT613 and RAD001 reduces glioma cell proliferation and invasion and support examination of the combination of RAF and TOR inhibitors for the treatment of human glioblastoma patients. [Mol Cancer Ther 2007;6(9):2449–57]


Cell Death & Differentiation | 1997

Fas activates NF-kappaB and induces apoptosis in T-cell lines by signaling pathways distinct from those induced by TNF-alpha.

Graham Packham; Jill M. Lahti; Brian E. Fee; Jonathan M. Gawn; Elaine Coustan-Smith; Dario Campana; Iris Douglas; Vincent J. Kidd; Sankar Ghosh; John L. Cleveland

The p55 tumor necrosis factor (TNF) receptor and the Fas (CD95/APO-1) receptor share an intracellular domain necessary to induce apoptosis, suggesting they utilize common signaling pathways. To define pathways triggered by Fas and TNF-α we utilized human CEM-C7 T-cells. As expected, stimulation of either receptor induced apoptosis and TNF-α-induced signaling included the activation of NF-κB. Surprisingly, Fas-induced signaling also triggered the activation of NF-κB in T cells, yet the kinetics of NF-κB induction by Fas was markedly delayed. NF-κB activation by both pathways was persistent and due to the sequential degradation of IκB-α and IκB-β. However, the kinetics of IκB degradation were different and there were differential effects of protease inhibitors and antioxidants on NF-κB activation. Signaling pathways leading to activation of apoptosis were similarly separable and were also independent of NF-κB activation. Thus, the Fas and TNF receptors utilize distinct signal transduction pathways in T-cells to induce NF-κB and apoptosis.


CNS Neuroscience & Therapeutics | 2014

AJAP1 is Dysregulated at an Early Stage of Gliomagenesis and Suppresses Invasion Through Cytoskeleton Reorganization

Lei Han; Kailiang Zhang; Junxia Zhang; Liang Zeng; Chunhui Di; Brian E. Fee; Miriam V. Rivas; Zhaoshi Bao; Tao Jiang; Darrell D. Bigner; Chunsheng Kang; David Cory Adamson

Down‐regulation of AJAP1 in glioblastoma multiforme (GBM) has been reported. However, the expression profiles of AJAP1 in gliomas and the underlying mechanisms of AJAP1 function on invasion are still poorly understood.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Transgenic expression of pancreatic secretory trypsin inhibitor-1 rescues SPINK3-deficient mice and restores a normal pancreatic phenotype.

Joelle Romac; Masaki Ohmuraya; Cathy M. Bittner; M. Faraz Majeed; Steven R. Vigna; Jianwen Que; Brian E. Fee; Thomas Wartmann; Ken Ichi Yamamura

Endogenous trypsin inhibitors are synthesized, stored, and secreted by pancreatic acinar cells. It is believed that they play a protective role in the pancreas by inhibiting trypsin within the cell should trypsinogen become prematurely activated. Rodent trypsin inhibitors are highly homologous to human serine protease inhibitor Kazal-type 1 (SPINK1). The mouse has one pancreatic trypsin inhibitor known as SPINK3, and the rat has two trypsin inhibitors commonly known as pancreatic secretory trypsin inhibitors I and II (PSTI-I and -II). Rat PSTI-I is a 61-amino acid protein that shares 65% sequence identity with mouse SPINK3. It was recently demonstrated that mice with genetic deletion of the Spink3 gene (Spink3(-/-)) do not survive beyond 15 days and lack normal pancreata because of pancreatic autophagy. We have shown that targeted transgenic expression of the rat Psti1 gene to acinar cells in mice [TgN(Psti1)] protects mice against caerulein-induced pancreatitis. To determine whether the autophagic phenotype and lethality in Spink3(-/-) mice were due to lack of pancreatic trypsin inhibitor, we conducted breeding studies with Spink3(+/-) heterozygous mice and TgN(Psti1) mice. We observed that, whereas Spink3(+/+), Spink3(+/-), and Spink3(-/-)/TgN(Psti1) mice had similar survival rates, no Spink3(-/-) mice survived longer than 1 wk. The level of expression of SPINK3 protein in acini was reduced in heterozygote mice compared with wild-type mice. Furthermore, endogenous trypsin inhibitor capacity was reduced in the pancreas of heterozygote mice compared with wild-type or knockout mice rescued with the rat Psti1 gene. Surprisingly, the lesser amount of SPINK3 present in the pancreata of heterozygote mice did not predispose animals to increased susceptibility to caerulein-induced acute pancreatitis. We propose that a threshold level of expression is sufficient to protect against pancreatitis.


International Journal of Oncology | 2014

The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM

Liang Zeng; Chunsheng Kang; Chunhui Di; Brian E. Fee; Miriam V. Rivas; James Lin; David Cory Adamson

Previous studies identified the frequent loss of adherens junction-associated protein 1 (AJAP1) expression in glioblastoma (GBM) and its correlation with worse survival. AJAP1 may suppress glioma cell migration, which plays an important role in tumor progression in malignant gliomas such as GBM. However, the role of AJAP1 in cell cycle arrest or apoptosis and resistance to chemotherapy remains unclear. Based on microarray screening results, quantitative PCR and luciferase plasmid reporter constructs were used to evaluate the possible regulatory role of AJAP1 on MAGEA2 expression and function. Cell death assays, TUNEL and other markers of apoptosis were utilized to detect cell apoptosis. Restoration of AJAP1 expression in glioma cells was analyzed after temozolomide exposure. AJAP1 suppressed the expression of MAGEA2 and inhibited the transcriptional activity of MAGEA2 in glioma cells. As AJAP1 expression decreased MAGEA2 protein expression apoptosis increased moderately. Consistent with increased cell death, the induced loss of MAGEA2 expression correlated with increased caspase 3/7 activity, BCL2/BAX ratio and TUNEL signal. AJAP1 expression enhanced cell death in the presence of temozolomide. This study suggests AJAP1 may also function as a pro-apoptotic factor and potentiate cell death by temozolomide in glioma cells. This effect may be partially explained by AJAP1-mediated gene regulation of MAGEA2.


International Journal of Oncology | 2014

Adherens junctional associated protein-1: A novel 1p36 tumor suppressor candidate in gliomas (Review)

Liang Zeng; Brian E. Fee; Miriam V. Rivas; James Lin; David Cory Adamson

In a broad range of human cancers 1p36 has been a mutational hotspot which strongly suggests that the loss of tumor suppressor activity maps to this genomic region during tumorigenesis. Adherens junctional associated protein-1 (AJAP1; also known as Shrew1) was initially discovered as a novel transmembrane protein of adherent junctions in epithelial cells. Gene profiling showed AJAP1 on 1p36 is frequently lost or epigenetically silenced. AJAP1 may affect cell motility, migration, invasion and proliferation by unclear mechanisms. AJAP1 may be translocated to the nucleus, via its interaction with β-catenin complexes, where it can regulate gene transcription, then possibly have a potent impact on cell cycling and apoptosis. Significantly, loss of AJAP1 expression predicts poor clinical outcome of patients with malignant gliomas such as GBM and it may serve as a promising tumor suppressor-related target. In this review, we summarize and discuss current knowledge that may identify AJAP1 as a tumor suppressor in gliomas.


Journal of Biological Chemistry | 2017

Metabolic alterations contribute to enhanced inflammatory cytokine production in Irgm1-deficient macrophages

Elyse A. Schmidt; Brian E. Fee; Stanley C. Henry; Amanda G. Nichols; Mari L. Shinohara; Jeffrey C. Rathmell; Nancie J. MacIver; Jörn Coers; Olga Ilkayeva; Timothy R. Koves; Gregory A. Taylor

The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear. In the studies reported here, we found that uninfected Irgm1-deficient mice displayed high levels of serum cytokines typifying profound autoinflammation. Similar increases in cytokine production were also seen in cultured, IFN-γ-primed macrophages that lacked Irgm1. A series of metabolic studies indicated that the enhanced cytokine production was associated with marked metabolic changes in the Irgm1-deficient macrophages, including increased glycolysis and an accumulation of long chain acylcarnitines. Cells were exposed to the glycolytic inhibitor, 2-deoxyglucose, or fatty acid synthase inhibitors to perturb the metabolic alterations, which resulted in dampening of the excessive cytokine production. These results suggest that Irgm1 deficiency drives metabolic dysfunction in macrophages in a manner that is cell-autonomous and independent of infectious triggers. This may be a significant contributor to excessive inflammation seen in Irgm1-deficient mice in different contexts.

Collaboration


Dive into the Brian E. Fee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Cleveland

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard P. Zambetti

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge