Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian F. O’Dowd is active.

Publication


Featured researches published by Brian F. O’Dowd.


Trends in Pharmacological Sciences | 1999

NOVEL GPCRS AND THEIR ENDOGENOUS LIGANDS : EXPANDING THE BOUNDARIES OF PHYSIOLOGY AND PHARMACOLOGY

Adriano Marchese; Susan R. George; Lee F. Kolakowski; Kevin R. Lynch; Brian F. O’Dowd

Nearly all molecules known to signal cells via G proteins have been assigned a cloned G-protein-coupled-receptor (GPCR) gene. This has been the result of a decade-long genetic search that has also identified some receptors for which ligands are unknown; these receptors are described as orphans (oGPCRs). More than 80 of these novel receptor systems have been identified and the emphasis has shifted to searching for novel signalling molecules. Thus, multiple neurotransmitter systems have eluded pharmacological detection by conventional means and the tremendous physiological implications and potential for these novel systems as targets for drug discovery remains unexploited. The discovery of all the GPCR genes in the genome and the identification of the unsolved receptor-transmitter systems, by determining the endogenous ligands, represents one of the most important tasks in modern pharmacology.


Journal of Biological Chemistry | 1998

A Transmembrane Domain-derived Peptide Inhibits D1 Dopamine Receptor Function without Affecting Receptor Oligomerization

Susan R. George; Samuel P. Lee; George Varghese; Peter Zeman; Philip Seeman; Gordon Y. K. Ng; Brian F. O’Dowd

In this study, we show that a peptide based on the sequence of transmembrane domain 6 of the D1 dopamine receptor (D1DR) specifically inhibited D1DR binding and function, without affecting receptor oligomerization. It has been shown that an analogous peptide from the β2-adrenergic receptor disrupted dimerization and adenylyl cyclase activation in the β2-adrenergic receptor (Hebert, T. E., Moffett, S., Morello, J. P., Loisel, T. P., Bichet, D. G., Barret, C., and Bouvier, M. (1996) J. Biol. Chem. 271, 16384–16392). Treatment of D1DR with the D1DR transmembrane 6 peptide resulted in a dose-dependent, irreversible inhibition of D1DR antagonist binding, an effect not seen in D1DR with peptides based on transmembrane domains of other G protein-coupled receptors. Incubation with the D1DR transmembrane 6 peptide also resulted in a dose-dependent attenuation of both dopamine-induced [35S]guanosine 5′-3-O-(thio)triphosphate (GTPγS) binding and receptor-mediated dopamine stimulation of adenylyl cyclase activity. Notably, GTPγS binding and cAMP production were reduced to levels below baseline, indicating blockade of ligand-independent, intrinsic receptor activity. Immunoblot analyses of the D1DR revealed the receptor existed as monomers, dimers, and higher order oligomers and that these oligomeric states were unaffected after incubation with the D1DR transmembrane 6 peptide. These findings represent the first demonstration that a peptide based on the transmembrane 6 of the D1DR may represent a novel category of noncompetitive D1DR antagonists.


FEBS Letters | 1999

Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed.

Zhidong Xie; Samuel P. Lee; Brian F. O’Dowd; Susan R. George

The serotonin (5‐hydroxytryptamine (5‐HT)) 1B and 1D receptor subtypes share a high amino acid sequence identity and have similar ligand binding properties. In this study, we demonstrate that both receptor subtypes exist as monomers and homodimers when expressed alone and as monomers and heterodimers when co‐expressed. Gene expression studies have shown that there are brain regions where the 5‐HT1B and 5‐HT1D receptors are co‐localized and where heterodimerization may occur physiologically. This is the first direct visualization of the physical association between G protein‐coupled receptors of different subtypes.


Brain Research | 2001

Prolonged fear responses in mice lacking dopamine D1 receptor

Mufida El-Ghundi; Brian F. O’Dowd; Susan R. George

Dopamine is an important neurotransmitter involved in learning and memory including emotional memory. The involvement of dopamine in conditioned fear has been widely documented. However, little is known about the molecular mechanisms that underlie contextual fear conditioning and memory consolidation. To address this issue, we used dopamine D1-deficient mice (D1-/-) and their wild-type (D1+/+) and heterozygote (D1+/-) siblings to assess aversive learning and memory. We quantified two different aspects of fear responses to an environment where the mice have previously received unsignaled footshocks. Using one-trial step-through passive avoidance and conditioned freezing paradigms, mice were conditioned to receive mild inescapable footshocks then tested for acquisition, retention and extinction of conditioned fear responses 5 min after and up to 45-90 days post-training. No differences were observed among any of the genotypes in the acquisition of passive avoidance response or fear-induced freezing behavior. However, with extended testing, D1-/- mice exhibited prolonged retention and delayed extinction of conditioned fear responses in both tasks, suggesting that D1-/- mice are capable of acquiring aversive learning normally. These findings demonstrate that the dopamine D1 receptor is not important for acquisition or consolidation of aversive learning and memory but has an important role in modulating the extinction of fear memory.


Journal of Biological Chemistry | 1997

Agonist-induced desensitization of the mu opioid receptor is determined by threonine 394 preceded by acidic amino acids in the COOH-terminal tail.

Youngshil Pak; Brian F. O’Dowd; Susan R. George

To identify the structural determinants necessary for μ opioid receptor desensitization, we serially ablated potential phosphorylation sites in the carboxyl tail of the receptor and examined their effects on [d-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO)-induced desensitization. First, we replaced Thr394with alanine (T394A) and stably expressed this mutant receptor in Chinese hamster ovary cells. The T394A receptor did not desensitize after 1 h of treatment with DAMGO, indicating that Thr394 is required for agonist-induced early desensitization. To test whether Thr394 was the only residue necessary, we investigated the importance of 7 potential phosphorylation sites between residues 363 and 383, which were all replaced by alanines with the Thr394 maintained. This mutant (AT) showed partial loss of desensitization (30%), which was attributable to the Ala mutation at Thr383, since complete desensitization was achieved by restoring Thr383 (ATT). These results suggest that Thr394 is the primary recognition site for G protein-coupled receptor kinases, but Thr383 is also required for complete agonist-induced desensitization. The specificity of Thr394 as the primary initiation site appears to be dependent on the preceding acidic amino acid stretch, because in a mutant in which glutamic acid residues at 388, 391, and 393 were replaced by glutamines (EQ), agonist-induced desensitization was completely abolished, identical to the T394A mutant.


Frontiers in Neuroanatomy | 2011

The dopamine D1-D2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in basal ganglia

Melissa L. Perreault; Ahmed Hasbi; Brian F. O’Dowd; Susan R. George

Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin (DYN) and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin (ENK). A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express DYN and ENK, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1–D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1–D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission.


Current Opinion in Pharmacology | 2010

Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms

Ahmed Hasbi; Brian F. O’Dowd; Susan R. George

The repertoire of signal transduction pathways activated by dopamine in brain includes the increase of intracellular calcium. However the mechanism(s) by which dopamine activated this important second messenger system was/were unknown. Although we showed that activation of the D5 dopamine receptor increased calcium concentrations, the restricted anatomic distribution of this receptor made this unlikely to be the major mechanism in brain. We have identified novel heteromeric dopamine receptor complexes that are linked to calcium signaling. The calcium pathway activated through the D1-D2 receptor heteromer involved coupling to Gq, through phospholipase C and IP(3) receptors to result in a rise in intracellular calcium. The calcium rise activated through the D2-D5 receptor heteromer involved a small rise in intracellular calcium through the Gq pathway that triggered a store-operated channel mediated influx of extracellular calcium. These novel receptor heteromeric complexes, for the first time, establish the link between dopamine action and rapid calcium signaling.


Journal of Biological Chemistry | 1999

Agonist-induced, G Protein-dependent and -independent Down-regulation of the μ Opioid Receptor THE RECEPTOR IS A DIRECT SUBSTRATE FOR PROTEIN-TYROSINE KINASE

Youngshil Pak; Brian F. O’Dowd; Jia Bei Wang; Susan R. George

The μ opioid receptor (MOR) has been shown to desensitize after 1 h of exposure to the opioid peptide, [d-Ala2, N-MePhe4, Gly-ol5]enkephalin (DAMGO), largely by the loss of receptors from the cell surface and receptor down-regulation. We have previously shown that the Thr394 in the carboxyl tail is essential for agonist-induced early desensitization, presumably by serving as a primary phosphorylation site for G protein-coupled receptor kinase. Using a T394A mutant receptor, we determined that Thr394 was also responsible for μ opioid receptor down-regulation. The T394A mutant receptor displayed 50% reduction of receptor down-regulation (14.8%) compared with wild type receptor (34%) upon 1 h of exposure to DAMGO. Agonist-induced T394A receptor down-regulation was unaffected by pertussis toxin treatment, indicating involvement of a mechanism independent of G protein function. Interestingly, pertussis toxin-insensitive T394A receptor down-regulation was completely inhibited by a tyrosine kinase inhibitor, genistein. Tyrosine kinase inhibition blocked wild type MOR down-regulation by 50%, and the genistein-resistant wild type MOR down-regulation was completely pertussis toxin-sensitive. Following DAMGO stimulation, MOR was shown to be phosphorylated at tyrosine residue(s), indicating that the receptor was a direct substrate for tyrosine kinase action. Mutagenesis of the four intracellular tyrosine residues resulted in complete inhibition of the G protein-insensitive MOR internalization. Therefore, agonist-induced MOR down-regulation appears to be mediated by two distinct cellular signal transduction pathways. One is G protein-dependent and GRK-dependent, which can be abolished by pertussis toxin treatment of wild type MOR or by mutagenesis of Thr394. The other novel pathway is G protein-independent but tyrosine kinase-dependent, blocked by genistein treatment, and one in which Thr394 has no regulatory role but phosphorylation of tyrosine residues appears essential.


Molecular Brain Research | 2001

Identification of four novel human G protein-coupled receptors expressed in the brain.

Dennis K. Lee; Susan R. George; Regina Cheng; Tuan V. Nguyen; Yang Liu; Morgan Brown; Kevin R. Lynch; Brian F. O’Dowd

We report the discovery and tissue distributions of four novel human genes, GPR61, GPR62, GPR63 and GPR77, all of which encode G protein-coupled receptors (GPCRs). GPR61 was discovered in a search of the patent literature which retrieved a rabbit DNA sequence partially encoding a novel GPCR. This sequence was used to obtain a full-length human cDNA encoding GPR61, a receptor of 417 amino acid length. A search of the GenBank genomic sequence databases revealed three previously unrecognized intronless genes encoding the orphan GPCrs (oGPCRs) GPR62, GPR63 and GPR77, with respective amino acid lengths of 368, 419 and 337. Sequence analysis revealed that GPR61 and GPR62, and a published orphan receptor p47MNR, shared the highest level of identities to each other, ranging from 36 to 45% in the transmembrane (TM) domains. Together, these three oGPCRs appear to comprise a novel subfamily of GPCRs, most closely related to the serotonin 5-HT(6) receptor. Sequence analysis of GPR63 and GPR77 revealed highest sequence identities in the TM regions with the oGPCR PSP24 (58%) and the anaphylatoxin C5a receptor (49%) respectively. Tissue distribution analyses detected the expression of all four novel genes in the human brain. GPR61 mRNA expression was detected in the caudate, putamen and thalamus of human brain, with a more widespread expression pattern in rat brain, with mRNA signals in areas of the cortex, hippocampus, thalamus, hypothalamus and midbrain. GPR62 mRNA expression was detected in the basal forebrain, frontal cortex, caudate, putamen, thalamus and hippocampus. GPR63 mRNA expression was detected in the frontal cortex, with lower levels in the thalamus, caudate, hypothalamus and midbrain. Analysis of GPR77 mRNA expression revealed signals in the frontal cortex, hippocampus and hypothalamus with high transcript levels in the liver.


Molecular Brain Research | 2000

The splice variant D3nf reduces ligand binding to the D3 dopamine receptor: evidence for heterooligomerization

Jennifer L Elmhurst; Zhidong Xie; Brian F. O’Dowd; Susan R. George

The D3 dopamine receptor belongs to the D2-like family of dopamine receptors. As with other members of this group, the D3 dopamine receptor gene contains introns which allow for alternative splicing of gene products. The best characterized of the human D3 dopamine receptor mRNA splice variants encodes a truncated protein called D3nf. The D3 dopamine receptor and D3nf were epitope-tagged and expressed in Sf9 insect cells by recombinant baculovirus infection. The D3 dopamine receptor showed saturable, high affinity binding of agonists and antagonists, consistent with reported D3 dopamine receptor pharmacology. When the D3 dopamine receptor and D3nf were co-expressed, the apparent density of D3 dopamine receptor expression, as determined by radioligand binding, was significantly lowered compared to D3 dopamine receptor expressed alone. This effect of D3nf was specific for the D3 dopamine receptor, since co-expression with the D2 dopamine receptor or beta2-adrenoceptor had no effect on binding. Confocal immunofluorescence studies were used to confirm that both D3 dopamine receptor and D3nf were well expressed on the cell surface and densitometric analysis of cell surface membrane protein confirmed that D3nf did not significantly alter the amount of D3 dopamine receptor expressed. Photoaffinity labelling with [125I]azidonemonapride showed that the amount of ligand bound by membranes co-expressing D3 dopamine receptor and D3nf was significantly less than that bound by membranes expressing D3 dopamine receptor alone. The greatest decrease in binding was observed in the D3 dopamine receptor oligomeric forms. Ligand binding to dimers and tetramers was reduced by 69 and 46%, respectively, indicating effects of a protein-protein interaction. Co-immunoprecipitation confirmed that the D3DR and D3nf interact with each other. These data indicate that D3nf heterodimerizes with the D3 dopamine receptor and decreases the capacity of D3 dopamine receptor to bind ligand.

Collaboration


Dive into the Brian F. O’Dowd's collaboration.

Top Co-Authors

Avatar

Susan R. George

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Tuan V. Nguyen

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Regina Cheng

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theresa Fan

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge