Brian G. Ferguson
Defence Science and Technology Organization
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian G. Ferguson.
IEEE Transactions on Aerospace and Electronic Systems | 2003
Kam W. Lo; Brian G. Ferguson; Yujin Gao; A. Maguer
The signal emitted by an airborne acoustic source arrives at a stationary sensor located above a flat ground via a direct path and a ground-reflected path. The difference in the times of arrival of the direct path and ground-reflected path signal components, referred to as the multipath delay, provides an instantaneous estimate of the elevation angle of the source. A model is developed to predict the variation with time of the multipath delay for a jet aircraft or other broadband acoustic source in level flight with constant velocity over a hard ground. Based on this model, two methods are formulated to estimate the speed and altitude of the aircraft Both methods require the estimation of the multipath delay as a function of time. The methods differ only in the way the multipath delay is estimated; the first method uses the autocorrelation function, and the second uses the cepstrum, of the sensor output over a short time interval. The performances of both methods are evaluated and compared using real acoustic data. The second method provides the most precise aircraft speed and altitude estimates as compared with the first and two other existing methods.
IEEE Journal of Oceanic Engineering | 1989
Brian G. Ferguson
Passive sonar systems that localize broadband sources of acoustic energy estimate the difference in arrival times (or time delays) of an acoustic wavefront at spatially separated hydrophones, The output amplitudes from a given pair of hydrophones are cross-correlated, and an estimate of the time delay is given by the time lag that maximizes the cross correlation function. Often the time-delay estimates are corrupted by the presence of noise. By replacing each of the omnidirectional hydrophones with an array of hydrophones, and then cross-correlating the beamformed outputs of the arrays, the author shows that the effect of noise on the time-delay estimation process is reduced greatly. Both conventional and adaptive beamforming methods are implemented in the frequency domain and the advantages of array beamforming (prior to cross-correlation) are highlighted using both simulated and real noise-field data. Further improvement in the performance of the broadband cross-correlation processor occurs when various prefiltering algorithms are invoked. >
IEEE Journal of Oceanic Engineering | 1996
Brian G. Ferguson
The acoustic spectrum of a transiting aircraft, when received by a hydrophone located beneath the sea surface, changes with time due to the acoustical Doppler effect. The traditional method for analysing signals whose frequency content changes with time is the short-time Fourier transform that selects only a short segment of the signal (or window of data) for spectral analysis at any one time. The short-time Fourier transform requires the frequency content of the signal to be stationary during the analysis window, otherwise the frequency information will be smeared by the transformation. Recently, joint time-frequency distributions, which highlight the temporal localisation of a signals spectral components, have been used to analyse nonstationary signals whose spectra are time dependent. In this paper, the short-time Fourier transform and the Wigner-Ville time-frequency distribution are applied to time-series data from a hydrophone so that the instantaneous frequency of the propeller blade rate of a turbo-prop aircraft can be estimated at short time intervals during the aircrafts transit over the hydrophone. The variation with time of the estimates of the Doppler-shifted blade rate is then compared with the corresponding temporal variation predicted using a model that assumes the sound propagates from the airborne acoustic source to the subsurface receiver through two distinct isospeed media (air and water) separated by a plane boundary (the air-sea interface). The results for five transits are presented in which the altitude of the aircraft ranged from 350 to 6050 ft with the speed of the aircraft varying from 232 to 245 kn.
IEEE Journal of Oceanic Engineering | 1999
Brian G. Ferguson; Kam W. Lo
Sound from an airborne source travels to a receiver beneath the sea surface via a geometric path that is most simply described using ray theory, where the atmosphere and the sea are assumed to be isospeed sound propagation media separated by a planar surface (the air-sea interface). This theoretical approach leads to the development of a time-frequency model for the signal received by a single underwater acoustic sensor and a time-delay model for the signals received by a pair of spatially separated underwater acoustic sensors. The validity of these models is verified using spatially averaged experimental data recorded from a linear array of hydrophones during various transits of a turboprop aircraft. The same approach is used to solve the inverse time-frequency problem, that is, estimation of the aircrafts speed, altitude, and propeller blade rate given the observed variation with time of the instantaneous frequency of the received signal. Similarly, the inverse time-delay problem is considered whereby the speed and altitude of the aircraft are estimated using the differential time-of-arrival information from each of two adjacent pairs of widely spaced hydrophones (with one hydrophone being common to each pair). It is found that the solutions to each of the inverse problems provide reliable estimates of the speed and altitude of the aircraft, with the inverse time-frequency method also providing an estimate that closely matches the actual propeller blade rate.
IEEE Journal of Oceanic Engineering | 1993
Brian G. Ferguson
The effects of both small perturbations and large deformations to the arrays shape on both conventional and adaptive beamformers are shown for two frequencies: the spatial Nyquist frequency (or design frequency) of the array and a frequency about three times greater. Large shape deformations lead to a decrease in the conventional beamformers output power for a beam steered in the direction of the signal source, together with an increase in the sidelobe levels (or secondary maxima), while small perturbations in the array shape have little effect. Signal suppression is observed to be far greater for the adaptive beamformer because it is very sensitive to system errors. The imposition of a weight norm constraint on the adaptive beamformer reduces the signal suppression only for small shape perturbations array shape estimation techniques are needed to reduce signal suppression for large shape deformations. The adverse effects of a nonlinear array shape on both conventional and adaptive beamforming are shown to be substantially reduced by applying techniques that estimate the coordinates of the hydrophones prior to beamforming. >
IEEE Journal of Oceanic Engineering | 2005
Brian G. Ferguson; Kam W. Lo; Ranjit A. Thuraisingham
Underwater acoustic transient signals are generated mechanically at known positions along a wharf. These signals are received by a wide aperture planar array of four underwater acoustic sensors, whose positions relative to the wharf are unknown. A method is described that enables the positions of the sensors to be estimated from accurate differential time-of-arrival measurements (with 0.1 /spl mu/s precision) as the signal wavefronts traverse the array. A comparison of the estimated positions with the nominal positions of the first three sensors, which form a 20-m-wide aperture horizontal line array, reveals a 2-cm displacement of the middle sensor from the line array axis. This slight bowing of the line array results in overranging (bias error of 3%) when the wavefront curvature method is used with the nominal collinear sensor positions to locate a static source of active sonar transmissions at a range of 59.2 m. The use of the spherical intersection method coupled with the estimated sensor positions of the line array provides an order of magnitude improvement in the range estimate (within 0.3% of the actual value). However, systematic ranging errors are observed when the sound propagation medium becomes nonstationary. Next, the differences in the arrival times of the direct path and boundary-reflected path signals at the middle sensor of the wide aperture line array are estimated using the differential phase residue of the analytic signal at the sensor output. These multipath delays are used to estimate the range and depth of the source. Although the average value of the multipath range estimates is within 0.5% of the actual value, the variance of the range estimates is 50 times larger when compared with the results of the spherical intersection and wavefront curvature methods. The multipath delay data are also processed to provide a reliable estimate of the temporal variation in the water depth enabling the tidal variation to be observed.
IEEE Journal of Oceanic Engineering | 2009
Brian G. Ferguson; Gary C. Speechley
The acoustic spectrum of a propeller-driven aircraft is dominated by a series of spectral lines that are harmonically related to the blade rate (which is equal to the product of the propeller rotation rate and the number of blades on the propeller). We show that an array of acoustic sensors towed below the sea surface can be used for the passive detection and localization of such an aircraft. The acoustic energy from an aircraft is found to reach the subsurface sensors via two propagation paths: a bottom reflection path that enables the aircraft to be detected at long ranges, and a direct path that is present only when the aircraft passes overhead. For each of these paths, the observed variation with horizontal range of the Doppler shift in the blade rate closely matches the variation predicted by the simple model presented in this paper. Good agreement between theory and experiment is also obtained for the variation with horizontal range of the aircrafts apparent bearing. Thus, by using the observed Doppler shift and apparent bearing information, we were able to estimate the aircrafts horizontal range, speed, direction, and altitude.
international conference on intelligent sensors, sensor networks and information processing | 2008
Kam W. Lo; Brian G. Ferguson
A direct fire weapon (rifle) produces an impulsive sound (muzzle blast) associated with the firing of a bullet. If the bullet travels at a supersonic speed, another impulsive sound (ballistic shock wave) is generated by the passage of the bullet. A ballistic model-based method which uses both the acoustic muzzle blast and shock wave for ranging direct fire weapons is described. The effectiveness of this ranging method is demonstrated using real data. Field experiment results also show that its performance is superior to the conventional method which assumes a constant bullet velocity.
IEEE Journal of Oceanic Engineering | 2009
Brian G. Ferguson; Ron J. Wyber
When an underwater object is insonified over a range of aspect angles, the signals that are backscattered from the object can be sampled in space and time by an array of sensors, which can form either a real or a synthetic aperture. The spatial information contained in the backscattered signals can be processed using inverse transform methods to form an image of the 2-D spatial distribution of the objects acoustic reflectivity function. The signal measurement space (or data space) defines a sector of the polar wave number spectrum that quantifies the variation with aspect angle of the spatial frequency components that contribute to the backscattered signal. The temporal bandwidth of the incident sonar pulse determines the radial extent of the sector, while the range of aspect angles over which the object is insonified defines the angular extent of the sector. Equivalently, the extent of the aperture that is formed by the sensor positions relative to the object determines the angular extent of the sector. This concept provides a generalized framework that unifies sonar imaging techniques such as reconstructive tomography (image reconstruction from projections), synthetic aperture sonar, and real aperture sidescan sonar. The difference in these techniques is simply due to the azimuthal angle subtended by the aperture of the sensing array, which is typically a fraction of a degree for a real aperture sonar, several degrees for a strip map synthetic aperture sonar, tens of degrees for a spotlight synthetic aperture sonar, and 360deg for a tomographic imaging sonar. Experimental results are presented for a real aperture sidescan sonar, a synthetic aperture sonar, and a tomographic sonar that demonstrate the development of an acoustic image from a single blurred point to a clearly identifiable object as the azimuthal extent of the angle subtended by the sonar aperture is increased.
IEEE Transactions on Aerospace and Electronic Systems | 2004
Kam W. Lo; Brian G. Ferguson
A high-frequency (HF) active sonar can be used to detect and track a small fast surface watercraft in shallow water based on the evolution of the watercraft wake observed in the sonar image sequence. An automatic detection and tracking (ADT) algorithm is described for this novel application. For each ping, the measurement of the targets polar position consists of 2 steps. First, the target bearing is estimated by finding the direction of arrival of the cavitation noise emitted by the watercraft. Then range measurements are extracted from the range profile (constant-angle cut of the sonar image) at the estimated target bearing. Range normalization and clutter map processing are used to reduce the number of false measurements. Estimates of the targets Cartesian position and velocity are updated at the sonar pulse repetition rate using the Kalman filter with debiased consistent converted measurements and nearest neighbour data association. The proposed algorithm is demonstrated using real data.