Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Giunta is active.

Publication


Featured researches published by Brian Giunta.


The Journal of Neuroscience | 2000

Blueberry Opposes β-Amyloid Peptide-Induced Microglial Activation Via Inhibition of p44/42 Mitogen-Activation Protein Kinase

Yuyan Zhu; Paula C. Bickford; Paul R. Sanberg; Brian Giunta; Jun Tan

Alzheimers Disease (AD) is the most common age-related dementia, with a current prevalence in excess of five million individuals in the United States. The aggregation of amyloid-beta (A beta) into fibrillar amyloid plaques is a key pathological event in the development of the disease. Microglial proinflammatory activation is widely known to cause neuronal and synaptic damage that correlates with cognitive impairment in AD. However, current pharmacological attempts at reducing neuroinflammation mediated via microglial activation have been largely negative in terms of slowing AD progression. Previously, we have shown that microglia express proinflammatory cytokines and a reduced capacity to phagocytose A beta in the context of CD40, A beta peptides and/or lipopolysaccharide (LPS) stimulation, a phenomenon that can be opposed by attenuation of p44/42 mitogen-activated protein kinase (MAPK) signaling. Other groups have found that blueberry (BB) extract both inhibits phosphorylation of this MAPK module and also improves cognitive deficits in AD model mice. Given these considerations and the lack of reduced A beta quantities in behaviorally improved BB-fed mice, we wished to determine whether BB supplementation would alter the microglial proinflammatory activation state in response to A beta. We found that BB significantly enhances microglial clearance of A beta, inhibits aggregation of A beta(1-42), and suppresses microglial activation, all via suppression of the p44/42 MAPK module. Thus, these data may explain the previously observed behavioral recovery in PSAPP mice and suggest a means by which dietary supplementation could mitigate an undesirable microglial response toward fibrillar A beta.


International Journal of Pharmaceutics | 2010

Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease

Adam J. Smith; Brian Giunta; Paula C. Bickford; Michael Fountain; Jun Tan; R. Douglas Shytle

Prevention of amyloidogenic processing of amyloid precursor protein with the use of natural phytochemicals capable of enhancing alpha-secretase activity may be a therapeutic approach for treatment of neurodegenerative diseases including Alzheimers disease (AD) and HIV-associated dementia (HAD). We have recently shown promising preclinical results with the use of green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG) in mouse models of both diseases, however the translation into clinical use has been problematic primarily as a result of poor bioavailability and inefficient delivery to the central nervous system (CNS). While the antioxidant properties of EGCG are well known, we have shown that it is able to promote non-amyloidogenic processing of amyloid precursor protein (APP) by upregulating alpha-secretase, thus preventing brain beta amyloid plaque formation, a hallmark of AD pathology and common finding in HIV infection. In this preliminary study, we investigated the ability of one preformulation method to improve the oral bioavailability of EGCG. We found that forming nanolipidic EGCG particles improves the neuronal (SweAPP N2a cells) alpha-secretase enhancing ability in vitro by up to 91% (P<001) and its oral bioavailability in vivo by more than two-fold over free EGCG.


Frontiers in Neurology | 2013

MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

Diana G. Hernandez-Ontiveros; Naoki Tajiri; Sandra Acosta; Brian Giunta; Jun Tan; Cesar V. Borlongan

Traumatic brain injury (TBI) has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation, and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation, and accurate handling of all data (Landis et al., 2012). A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.


Stem Cells and Development | 2008

Peripherally Administered Human Umbilical Cord Blood Cells Reduce Parenchymal and Vascular β-Amyloid Deposits in Alzheimer Mice

William V. Nikolic; Huayan Hou; Terrence Town; Yuyan Zhu; Brian Giunta; Cyndy D. Sanberg; Jin Zeng; Deyan Luo; Jared Ehrhart; Takashi Mori; Paul R. Sanberg; Jun Tan

Modulation of immune/inflammatory responses by diverse strategies including amyloid-beta (Abeta) immunization, nonsteroidal anti-inflammatory drugs, and manipulation of microglial activation states has been shown to reduce Alzheimers disease (AD)-like pathology and cognitive deficits in AD transgenic mouse models. Human umbilical cord blood cells (HUCBCs) have unique immunomodulatory potential. We wished to test whether these cells might alter AD-like pathology after infusion into the PSAPP mouse model of AD. Here, we report a marked reduction in Abeta levels/beta-amyloid plaques and associated astrocytosis following multiple low-dose infusions of HUCBCs. HUCBC infusions also reduced cerebral vascular Abeta deposits in the Tg2576 AD mouse model. Interestingly, these effects were associated with suppression of the CD40-CD40L interaction, as evidenced by decreased circulating and brain soluble CD40L (sCD40L), elevated systemic immunoglobulin M (IgM) levels, attenuated CD40L-induced inflammatory responses, and reduced surface expression of CD40 on microglia. Importantly, deficiency in CD40 abolishes the effect of HUCBCs on elevated plasma Abeta levels. Moreover, microglia isolated from HUCBC-infused PSAPP mice demonstrated increased phagocytosis of Abeta. Furthermore, sera from HUCBC-infused PSAPP mice significantly increased microglial phagocytosis of the Abeta1-42 peptide while inhibiting interferon-gammainduced microglial CD40 expression. Increased microglial phagocytic activity in this scenario was inhibited by addition of recombinant CD40L protein. These data suggest that HUCBC infusion mitigates AD-like pathology by disrupting CD40L activity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Transcutaneous β-amyloid immunization reduces cerebral β-amyloid deposits without T cell infiltration and microhemorrhage

William V. Nikolic; Yun Bai; Demian Obregon; Huayan Hou; Takashi Mori; Jin Zeng; Jared Ehrhart; R. Douglas Shytle; Brian Giunta; Dave Morgan; Terrence Town; Jun Tan

Alzheimers disease (AD) immunotherapy accomplished by vaccination with β-amyloid (Aβ) peptide has proved efficacious in AD mouse models. However, “active” Aβ vaccination strategies for the treatment of cerebral amyloidosis without concurrent induction of detrimental side effects are lacking. We have developed a transcutaneous (t.c.) Aβ vaccination approach and evaluated efficacy and monitored for deleterious side effects, including meningoencephalitis and microhemorrhage, in WT mice and a transgenic mouse model of AD. We demonstrate that t.c. immunization of WT mice with aggregated Aβ1–42 plus the adjuvant cholera toxin (CT) results in high-titer Aβ antibodies (mainly of the Ig G1 class) and Aβ1–42-specific splenocyte immune responses. Confocal microscopy of the t.c. immunization site revealed Langerhans cells in areas of the skin containing the Aβ1–42 immunogen, suggesting that these unique innate immune cells participate in Aβ1–42 antigen processing. To evaluate the efficacy of t.c. immunization in reducing cerebral amyloidosis, transgenic PSAPP (APPsw, PSEN1dE9) mice were immunized with aggregated Aβ1–42 peptide plus CT. Similar to WT mice, PSAPP mice showed high Aβ antibody titers. Most importantly, t.c. immunization with Aβ1–42 plus CT resulted in significant decreases in cerebral Aβ1–40,42 levels coincident with increased circulating levels of Aβ1–40,42, suggesting brain-to-blood efflux of Aβ. Reduction in cerebral amyloidosis was not associated with deleterious side effects, including brain T cell infiltration or cerebral microhemorrhage. Together, these data suggest that t.c. immunization constitutes an effective and potentially safe treatment strategy for AD.


Nature Communications | 2012

Soluble amyloid precursor protein-α modulates β-secretase activity and amyloid-β generation

Demian Obregon; Huayan Hou; Juan Deng; Brian Giunta; Jun Tian; Donna Darlington; Shahaduzzaman; Yuyuan Zhu; Takashi Mori; Mark P. Mattson; Jun Tan

In sporadic age-related forms of Alzheimers disease (AD), it is unclear why amyloid-β (Aβ) peptides accumulate. Here we show that soluble amyloid precursor protein-α (sAPP-α) decreases Aβ generation by directly associating with β-site APP-converting enzyme (BACE)1, thereby modulating APP processing. Whereas specifically targeting sAPP-α using antibodies enhances Aβ production; in transgenic mice with AD-like pathology, sAPP-α overexpression decreases β-amyloid plaques and soluble Aβ. In support, immunoneutralization of sAPP-α increases APP amyloidogenic processing in these mice. Given our current findings, and because a number of risk factors for sporadic AD serve to lower levels of sAPP-α in brains of AD patients, inadequate sAPP-α levels may be sufficient to polarize APP processing towards the amyloidogenic, Aβ-producing route. Therefore, restoration of sAPP-α or enhancement of its association with BACE may be viable strategies to ameliorate imbalances in APP processing that can lead to AD pathogenesis.


Journal of Neuroinflammation | 2012

The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention

Brian Giunta; Demian Obregon; Renuka Velisetty; Paul R. Sanberg; Cesar V. Borlongan; Jun Tan

A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.


Brain Research | 2006

EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-γ: Role of JAK/STAT1 signaling and implications for HIV-associated dementia

Brian Giunta; Demian Obregon; Hauyan Hou; Jin Zeng; Nan Sun; Veljko Nikolic; Jared Ehrhart; Douglas Shytle; Francisco Fernandez; Jun Tan

Human immunodeficiency virus (HIV)-1 infection of the central nervous system occurs in the vast majority of HIV-infected patients. HIV-associated dementia (HAD) represents the most severe form of HIV-related neuropsychiatric impairment and is associated with neuropathology involving HIV proteins and activation of proinflammatory cytokine circuits. Interferon-gamma (IFN-gamma) activates the JAK/STAT1 pathway, a key regulator of inflammatory and apoptotic signaling, and is elevated in HIV-1-infected brains progressing to HAD. Recent reports suggest green tea-derived (-)-epigallocatechin-3-gallate (EGCG) can attenuate neuronal damage mediated by this pathway in conditions such as brain ischemia. In order to investigate the therapeutic potential of EGCG to mitigate the neuronal damage characteristic of HAD, IFN-gamma was evaluated for its ability to enhance well-known neurotoxic properties of HIV-1 proteins gp120 and Tat in primary neurons and mice. Indeed, IFN-gamma enhanced the neurotoxicity of gp120 and Tat via increased JAK/STAT signaling. Additionally, primary neurons pretreated with a JAK1 inhibitor, or those derived from STAT1-deficient mice, were largely resistant to the IFN-gamma-enhanced neurotoxicity of gp120 and Tat. Moreover, EGCG treatment of primary neurons from normal mice reduced IFN-gamma-enhanced neurotoxicity of gp120 and Tat by inhibiting JAK/STAT1 pathway activation. EGCG was also found to mitigate the neurotoxic properties of HIV-1 proteins in the presence of IFN-gamma in vivo. Taken together, these data suggest EGCG attenuates the neurotoxicity of IFN-gamma augmented neuronal damage from HIV-1 proteins gp120 and Tat both in vitro and in vivo. Thus EGCG may represent a novel natural copound for the prevention and treatment of HAD.


The Journal of Neuroscience | 2011

CD45 Deficiency Drives Amyloid-β Peptide Oligomers and Neuronal Loss in Alzheimer's Disease Mice

Yuyan Zhu; Huayan Hou; Kavon Rezai-Zadeh; Brian Giunta; Amanda Ruscin; Carmelina Gemma; Jingji Jin; Natasa Dragicevic; Patrick C. Bradshaw; Suhail Rasool; Charles G. Glabe; Jared Ehrhart; Paula C. Bickford; Takashi Mori; Demian Obregon; Terrence Town; Jun Tan

Converging lines of evidence indicate dysregulation of the key immunoregulatory molecule CD45 (also known as leukocyte common antigen) in Alzheimers disease (AD). We report that transgenic mice overproducing amyloid-β peptide (Aβ) but deficient in CD45 (PSAPP/CD45−/− mice) faithfully recapitulate AD neuropathology. Specifically, we find increased abundance of cerebral intracellular and extracellular soluble oligomeric and insoluble Aβ, decreased plasma soluble Aβ, increased abundance of microglial neurotoxic cytokines tumor necrosis factor-α and interleukin-1β, and neuronal loss in PSAPP/CD45−/− mice compared with CD45-sufficient PSAPP littermates (bearing mutant human amyloid precursor protein and mutant human presenilin-1 transgenes). After CD45 ablation, in vitro and in vivo studies demonstrate an anti-Aβ phagocytic but proinflammatory microglial phenotype. This form of microglial activation occurs with elevated Aβ oligomers and neural injury and loss as determined by decreased ratio of anti-apoptotic Bcl-xL to proapoptotic Bax, increased activated caspase-3, mitochondrial dysfunction, and loss of cortical neurons in PSAPP/CD45−/− mice. These data show that deficiency in CD45 activity leads to brain accumulation of neurotoxic Aβ oligomers and validate CD45-mediated microglial clearance of oligomeric Aβ as a novel AD therapeutic target.


Journal of Neuroimmunology | 2009

Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism

Parker-Athill Ec; Deyan Luo; Antoinette R. Bailey; Brian Giunta; Jun Tian; R. Douglas Shytle; Tanya K. Murphy; Gabor Legradi; Jun Tan

Maternal immune activation (MIA) can affect fetal brain development and thus behavior of young and adult offspring. Reports have shown that increased Interleukin-6 (IL-6) in the maternal serum plays a key role in altering fetal brain development, and may impair social behaviors in the offspring. Interestingly, these effects could be attenuated by blocking IL-6. The current study investigated the effects of luteolin, a citrus bioflavonoid, and its structural analog, diosmin, on IL-6 induced JAK2/STAT3 (Janus tyrosine kinase-2/signal transducer and activator of transcription-3) phosphorylation and signaling as well as behavioral phenotypes of MIA offspring. Luteolin and diosmin inhibited neuronal JAK2/STAT3 phosphorylation both in vitro and in vivo following IL-6 challenge as well as significantly diminishing behavioral deficits in social interaction. Importantly, our results showed that diosmin (10mg/kgday) was able to block the STAT3 signal pathway; significantly opposing MIA-induced abnormal behavior and neuropathological abnormalities in MIA/adult offspring. Diosmins molecular inhibition of JAK2/STAT3 pathway may underlie the attenuation of abnormal social interaction in IL-6/MIA adult offspring.

Collaboration


Dive into the Brian Giunta's collaboration.

Top Co-Authors

Avatar

Jun Tan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Huayan Hou

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Demian Obregon

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Tian

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Jared Ehrhart

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Adam J. Smith

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Yuyan Zhu

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Darrell Sawmiller

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge