Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian H. K. Chan is active.

Publication


Featured researches published by Brian H. K. Chan.


Parasitology | 2003

Rodent malaria parasites suffer from the presence of conspecific clones in three-clone Plasmodium chabaudi infections

J. C. De Roode; Andrew F. Read; Brian H. K. Chan; Margaret J. Mackinnon

We studied infection dynamics of Plasmodium chabaudi in mice infected with 3 genetically distinct clones--1 less virulent than the other 2--either on their own or in mixtures. During the acute phase of infection, total numbers of asexual parasites in mixed-clone infections were equal to those produced by the 3 clones alone, suggesting strong in-host competition among clones. During the chronic phase of the infection, mixed-clone infections produced more asexual parasites than single-clone infections, suggesting lower levels of competition than during the acute phase, and indicating that a genetically diverse infection is harder to control by the host immune system. Transmission potential over the whole course of infection was lower from mixed-clone infections than from the average of the 3 single-clone infections. These results suggest that in-host competition reduces both growth rate and probability of transmission for individual parasite clones.


Evolution | 2003

MOSQUITO MORTALITY AND THE EVOLUTION OF MALARIA VIRULENCE

Heather M. Ferguson; Margaret J. Mackinnon; Brian H. K. Chan; Andrew F. Read

Abstract Several laboratory studies of malaria parasites (Plasmodium sp.) and some field observations suggest that parasite virulence, defined as the harm a parasite causes to its vertebrate host, is positively correlated with transmission. Given this advantage, what limits the continual evolution of higher parasite virulence? One possibility is that while more virulent strains are more infectious, they are also more lethal to mosquitoes. In this study, we tested whether the virulence of the rodent malaria parasite P. chabaudi in the laboratory mouse was correlated with the fitness of mosquitoes it subsequently infected. Mice were infected with one of seven genetically distinct clones of P. chabaudi that differ in virulence. Weight loss and anemia in infected mice were monitored for 16–17 days before Anopheles stephensi mosquitoes were allowed to take a blood meal from them. Infection virulence in mice was positively correlated with transmission to mosquitoes (infection rate) and weakly associated with parasite burden (number of oocysts). Mosquito survival fell with increasing oocyst burden, but there was no overall statistically significant relationship between virulence in mice and mosquito mortality. Thus, there was no evidence that more virulent strains are more lethal to mosquitoes. Both vector survival and fecundity depended on parasite clone, and contrary to expectations, mosquitoes fed on infections more virulent to mice were more fecund. The strong parasite genetic effects associated with both fecundity and survival suggests that vector fitness could be an important selective agent shaping malaria population genetics and the evolution of phenotypes such as virulence in the vector.


Parasitology | 2001

The effect of parasite dose on disease severity in the rodent malaria Plasmodium chabaudi

Rebecca Timms; Brian H. K. Chan; Andrew F. Read

Experiments were designed to look at the relationship between infective dose and disease severity using 2 clones of Plasmodium chabaudi that differ in virulence. We asked whether there were dose-severity relationships, whether clone differences in virulence were maintained over a range of doses, and whether disease severity could be accounted for by parasite dynamics. Groups of mice were infected with parasite doses differing by an order of magnitude, ranging from 100 to 1 x 10(8) parasites. Infective dose affected the probability of death, but only with the more virulent clone. Dose also affected morbidity. For both clones, higher doses induced greater anaemia. Larger doses caused greater weight loss, but only for infections with the more virulent clone. Here, for a given dose, mice lost a fixed amount of weight, irrespective of their initial weight. Larger doses induced earlier mortality and morbidity than did lower dose treatments. Finally, dose affected parasite dynamics, with earlier and higher peak parasite densities in larger dose infections. All these effects were small relative to clone differences in disease severity, which were apparent across the range of doses. Dose effects were manifested through the timing and/or magnitude of peak parasite densities, broadly supporting the idea that dose affects disease severity by altering the time the host has to control parasite densities and ameliorate the effects of parasites. We discuss the possible efficacy of intervention strategies aimed at reducing human disease severity by reducing infective parasite dose.


Biology Letters | 2012

Warmer temperatures reduce the vectorial capacity of malaria mosquitoes.

Krijn P. Paaijmans; Simon Blanford; Brian H. K. Chan; Matthew B. Thomas

The development rate of parasites and pathogens within vectors typically increases with temperature. Accordingly, transmission intensity is generally assumed to be higher under warmer conditions. However, development is only one component of parasite/pathogen life history and there has been little research exploring the temperature sensitivity of other traits that contribute to transmission intensity. Here, using a rodent malaria, we show that vector competence (the maximum proportion of infectious mosquitoes, which implicitly includes parasite survival across the incubation period) tails off at higher temperatures, even though parasite development rate increases. We also show that the standard measure of the parasite incubation period (i.e. time until the first mosquitoes within a cohort become infectious following an infected blood-meal) is incomplete because parasite development follows a cumulative distribution, which itself varies with temperature. Including these effects in a simple model dramatically alters estimates of transmission intensity and reduces the optimum temperature for transmission. These results highlight the need to understand the interactive effects of environmental temperature on multiple host-disease life-history traits and challenge the assumptions of many current disease models that ignore this complexity.


The American Naturalist | 2008

Understanding and Predicting Strain-Specific Patterns of Pathogenesis in the Rodent Malaria Plasmodium chabaudi

Nicole Mideo; Victoria C. Barclay; Brian H. K. Chan; Nicholas J. Savill; Andrew F. Read; Troy Day

Despite considerable success elucidating important immunological and resource‐based mechanisms that control the dynamics of infection in some diseases, little is known about how differences in these mechanisms result in strain differences in patterns of pathogenesis. Using a combination of data and theory, we disentangle the role of ecological factors (e.g., resource abundance) in the dynamics of pathogenesis for the malaria species Plasmodium chabaudi in CD4+ T cell–depleted mice. We build a series of nested models to systematically test a number of potential regulatory mechanisms and determine the “best” model using statistical techniques. The best‐fit model is further tested using an independent data set from mixed‐clone competition experiments. We find that parasites preferentially invade older red blood cells even when they are more fecund in younger reticulocytes and that inoculum size has a strong effect on burst size in reticulocytes. Importantly, the results suggest that strain‐specific differences in virulence arise from differences in red blood cell age‐specific invasion rates and burst sizes, since these are lower for the less virulent strain, as well as from differences in levels of erythopoesis induced by each strain. Our analyses highlight the importance of model selection and validation for revealing new biological insights.


PLOS Biology | 2012

The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi.

Victoria C. Barclay; Derek G. Sim; Brian H. K. Chan; Lucas A. Nell; Maia A. Rabaa; Andrew S. Bell; Robin F. Anders; Andrew F. Read

A candidate malaria vaccine promoted the evolution of more virulent malaria parasites in mice.


BMC Evolutionary Biology | 2008

Experimental manipulation of immune-mediated disease and its fitness costs for rodent malaria parasites

Gráinne H. Long; Brian H. K. Chan; Judith E. Allen; Andrew F. Read; Andrea L. Graham

BackgroundExplaining parasite virulence (harm to the host) represents a major challenge for evolutionary and biomedical scientists alike. Most theoretical models of virulence evolution assume that virulence arises as a direct consequence of host exploitation, the process whereby parasites convert host resources into transmission opportunities. However, infection-induced disease can be immune-mediated (immunopathology). Little is known about how immunopathology affects parasite fitness, or how it will affect the evolution of parasite virulence. Here we studied the effects of immunopathology on infection-induced host mortality rate and lifetime transmission potential – key components of parasite fitness – using the rodent malaria model, Plasmodium chabaudi chabaudi.ResultsNeutralizing interleukin [IL]-10, an important regulator of inflammation, allowed us to experimentally increase the proportion of virulence due to immunopathology for eight parasite clones. In vivo blockade of the IL-10 receptor (IL-10R) with a neutralizing antibody resulted in a shorter time to death that was independent of parasite density and was particularly marked for normally avirulent clones. This suggests that IL-10 induction may provide a pathway to avirulence for P. c. chabaudi. Despite the increased investment in transmission-stage parasites observed for some clones in response to IL-10R blockade, experimental enhancement of immunopathology incurred a uniform fitness cost to all parasite clones by reducing lifetime transmission potential.ConclusionThis is the first experimental study to demonstrate that infection-induced immunopathology and parasite genetic variability may together have the potential to shape virulence evolution. In accord with recent theory, the data show that some forms of immunopathology may select for parasites that make hosts less sick.


Malaria Journal | 2008

Does the drug sensitivity of malaria parasites depend on their virulence

Petra Schneider; Brian H. K. Chan; Sarah E. Reece; Andrew F. Read

BackgroundChemotherapy can prompt the evolution of classical drug resistance, but selection can also favour other parasite traits that confer a survival advantage in the presence of drugs. The experiments reported here test the hypothesis that sub-optimal drug treatment of malaria parasites might generate survival and transmission advantages for virulent parasites.MethodsTwo Plasmodium chabaudi lines, one derived from the other by serial passage, were used to establish avirulent and virulent infections in mice. After five days, infections were treated with various doses of pyrimethamine administered over 1 or 4 days. Virulence measures (weight and anaemia), parasite and gametocyte dynamics were followed until day 21.ResultsAll treatment regimes reduced parasite and gametocyte densities, but infections with the virulent line always produced more parasites and more gametocytes than infections with the avirulent line. Consistent with our hypothesis, drug treatment was disproportionately effective against the less virulent parasites. Treatment did not affect the relative transmission advantage of the virulent line. Neither of the lines contained known mutations conferring classical drug resistance.ConclusionDrug-sensitivity of malaria parasites can be virulence-dependent, with virulent parasites more likely to survive sub-optimal treatment. If this proves to be general for a variety of drugs and parasite species, selection imposed by sub-optimal drug treatment could result in the evolution of more aggressive malaria parasites.


International Journal for Parasitology | 2008

Blockade of TNF receptor 1 reduces disease severity but increases parasite transmission during Plasmodium chabaudi chabaudi infection

Gráinne H. Long; Brian H. K. Chan; Judith E. Allen; Andrew F. Read; Andrea L. Graham

Reducing host carriage of transmission-stage malaria parasites (gametocytes) is expected to decrease the population-wide burden of malaria. Some malaria disease severity is attributed to the induction of the pro-inflammatory cytokines TNF-alpha and lymphotoxin-alpha (LT-alpha), and we are interested in whether anti-malaria interventions which ameliorate the symptoms induced by those cytokines may have the capacity to alter malaria transmission. As many functions of TNF-alpha and LT-alpha are exerted through TNF receptor 1 (TNFR1), we investigated the effect TNFR1 blockade exerted on parasite transmission using the rodent malaria Plasmodium chabaudi chabaudi. We found that blocking TNFR1 simultaneously increased gametocyte density and infectivity to mosquitoes, whilst reducing disease severity (weight loss). These transmission-enhancing and severity-reducing effects of TNFR1 blockade were independent of asexual parasite load and were observed for several P. c. chabaudi genotypes. These results suggest that the effects of candidate malaria interventions on infectivity should be examined alongside effects on disease severity so that the epidemiological consequences of such interventions can be evaluated.


PLOS ONE | 2012

Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

Andrew S. Bell; Silvie Huijben; Krijn P. Paaijmans; Derek G. Sim; Brian H. K. Chan; William A. Nelson; Andrew F. Read

The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

Collaboration


Dive into the Brian H. K. Chan's collaboration.

Top Co-Authors

Avatar

Andrew F. Read

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Simon Blanford

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew S. Bell

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Derek G. Sim

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Silvie Huijben

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge