Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Hutzen is active.

Publication


Featured researches published by Brian Hutzen.


Cancer Research | 2010

Novel STAT3 Phosphorylation Inhibitors Exhibit Potent Growth-Suppressive Activity in Pancreatic and Breast Cancer Cells

Li Lin; Brian Hutzen; Mingxin Zuo; Sarah Ball; Stephanie Deangelis; Elizabeth Foust; Bulbul Pandit; Michael A. Ihnat; Satyendra S. Shenoy; Samuel K. Kulp; Pui Kai Li; Chenglong Li; James R. Fuchs; Jiayuh Lin

The constitutive activation of signal transducer and activator of transcription 3 (STAT3) is frequently detected in most types of human cancer where it plays important roles in survival, drug resistance, angiogenesis, and other functions. Targeting constitutive STAT3 signaling is thus an attractive therapeutic approach for these cancers. We have recently developed novel small-molecule STAT3 inhibitors, known as FLLL31 and FLLL32, which are derived from curcumin (the primary bioactive compound of turmeric). These compounds are designed to bind selectively to Janus kinase 2 and the STAT3 Src homology-2 domain, which serve crucial roles in STAT3 dimerization and signal transduction. Here we show that FLLL31 and FLLL32 are effective inhibitors of STAT3 phosphorylation, DNA-binding activity, and transactivation in vitro, leading to the impediment of multiple oncogenic processes and the induction of apoptosis in pancreatic and breast cancer cell lines. FLLL31 and FLLL32 also inhibit colony formation in soft agar and cell invasion and exhibit synergy with the anticancer drug doxorubicin against breast cancer cells. In addition, we show that FLLL32 can inhibit the induction of STAT3 phosphorylation by IFNalpha and interleukin-6 in breast cancer cells. We also show that administration of FLLL32 can inhibit tumor growth and vascularity in chicken embryo xenografts as well as substantially reduce tumor volumes in mouse xenografts. Our findings highlight the potential of these new compounds and their efficacy in targeting pancreatic and breast cancers that exhibit constitutive STAT3 signaling.


British Journal of Cancer | 2009

LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model

Beng Fuh; Sobo M; Cen L; Josiah D; Brian Hutzen; Cisek K; Bhasin D; Regan N; Lin L; Chan C; Caldas H; DeAngelis S; Li C; Li Pk; Lin J

Persistent activation of the signal transducer and activator of transcription 3 (STAT3) signalling has been linked to oncogenesis and the development of chemotherapy resistance in glioblastoma and other cancers. Inhibition of the STAT3 pathway thus represents an attractive therapeutic approach for cancer. In this study, we investigated the inhibitory effects of a small molecule compound known as LLL-3, which is a structural analogue of the earlier reported STAT3 inhibitor, STA-21, on the cell viability of human glioblastoma cells, U87, U373, and U251 expressing constitutively activated STAT3. We also investigated the inhibitory effects of LLL-3 on U87 glioblastoma cell growth in a mouse tumour model as well as the impact it had on the survival time of the treated mice. We observed that LLL-3 inhibited STAT3-dependent transcriptional and DNA binding activities. LLL-3 also inhibited viability of U87, U373, and U251 glioblastoma cells as well as induced apoptosis of these glioblastoma cell lines as evidenced by increased poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavages. Furthermore, the U87 glioblastoma tumour-bearing mice treated with LLL-3 exhibited prolonged survival relative to vehicle-treated mice (28.5 vs 16 days) and had smaller intracranial tumours and no evidence of contralateral invasion. These results suggest that LLL-3 may be a potential therapeutic agent in the treatment of glioblastoma with constitutive STAT3 activation.


Cancer Science | 2009

New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells.

Li Lin; Brian Hutzen; Sarah Ball; Elizabeth Foust; Matthew Sobo; Stephanie Deangelis; Bulbul Pandit; Lauren Friedman; Chenglong Li; Pui-Kai Li; James R. Fuchs; Jiayuh Lin

Curcumin, the active component of turmeric, has been shown to protect against carcinogenesis and prevent tumor development in cancer. To enhance its potency, we tested the efficacy of synthetic curcumin analogues, known as FLLL11 and FLLL12, in cancer cells. We examined the impact of FLLL11 and FLLL12 on cell viability in eight different breast and prostate cancer cell lines. FLLL11 and FLLL12 (IC50 values 0.3–5.7 and 0.3–3.8 µmol/L, respectively) were substantially more potent than curcumin (IC50 values between 14.4–50 µmol/L). FLLL11 and FLLL12 were also found to inhibit AKT phosphorylation and downregulate the expression of HER2/neu. In addition, we demonstrate for the first time that FLLL11 and FLLL12 inhibit phosphorylation of signal transducer and activator of transcription (STAT) 3, an oncogene frequently found to be persistently active in many cancer types. The inhibition of STAT3 signaling was confirmed by the inhibition of STAT3 DNA binding and STAT3 transcriptional activity. Furthermore, FLLL11 and FLLL12 were more effective than curcumin in inhibiting cell migration and colony formation in soft agar as well as inducing apoptosis in cancer cells. These results indicate that FLLL11 and FLLL12 exhibit more potent activities than curcumin on the inhibition of STAT3, AKT, and HER‐2/neu, as well as inhibit cancer cell growth and migration, and may thus have translational potential as chemopreventive or therapeutic agents for breast and prostate cancers. (Cancer Sci 2009; 100: 1719–1727)


Molecular Cancer | 2008

Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival.

Chun Liang Chen; Ling Cen; Jennifer Kohout; Brian Hutzen; Christina Chan; Fu Chuan Hsieh; Abbey Loy; Victor Huang; Gong Cheng; Jiayuh Lin

BackgroundConstitutive activation of signal transducer and activator of transcription 3 (Stat3) signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer.ResultsWe found that elevated Stat3 phosphorylation in 19 of 100 (19%) bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F) and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC). The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin) and a cell cycle regulating gene (cyclin D1) was associated with the cell growth inhibition and apoptosis.ConclusionThese results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.


BMC Cancer | 2009

New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells

Ling Cen; Brian Hutzen; Sarah Ball; Stephanie Deangelis; Chun Liang Chen; James R. Fuchs; Chenglong Li; Pui Kai Li; Jiayuh Lin

BackgroundColorectal carcinoma is one of the major causes of morbidity and mortality in the Western World. Novel therapeutic approaches are needed for colorectal carcinoma. Curcumin, the active component and yellow pigment of turmeric, has been reported to have several anti-cancer activities including anti-proliferation, anti-invasion, and anti-angiogenesis. Clinical trials have suggested that curcumin may serve as a potential preventive or therapeutic agent for colorectal cancer.MethodsWe compared the inhibitory effects of curcumin and novel structural analogues, GO-Y030, FLLL-11, and FLLL-12, in three independent human colorectal cancer cell lines, SW480, HT-29, and HCT116. MTT cell viability assay was used to examine the cell viability/proliferation and western blots were used to determine the level of PARP cleavages. Half-Maximal inhibitory concentrations (IC50) were calculated using Sigma Plot 9.0 software.ResultsCurcumin inhibited cell viability in all three of the human colorectal cancer cell lines studied with IC50 values ranging between 10.26 μM and 13.31 μM. GO-Y030, FLLL-11, and FLLL-12 were more potent than curcumin in the inhibition of cell viability in these three human colorectal cancer cell lines with IC50 values ranging between 0.51 μM and 4.48 μM. In addition, FLLL-11 and FLLL-12 exhibit low toxicity to WI-38 normal human lung fibroblasts with an IC-50 value greater than 1,000 μM. GO-Y030, FLLL-11, and FLLL-12 are also more potent than curcumin in the induction of apoptosis, as evidenced by cleaved PARP and cleaved caspase-3 in all three human colorectal cancer cell lines studied.ConclusionThe results indicate that the three curcumin analogues studied exhibit more potent inhibitory activity than curcumin in human colorectal cancer cells. Thus, they may have translational potential as chemopreventive or therapeutic agents for colorectal carcinoma.


British Journal of Cancer | 2009

MI-63: A novel small-molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53

J. A. Canner; M. Sobo; S. Ball; Brian Hutzen; S. Deangelis; W. Willis; A. W. Studebaker; Ke Ding; Shaomeng Wang; Dajun Yang; J. Lin

Background:Interruption of the role of p53s as a tumour suppressor by MDM2 may be one of the mechanisms by which cancer cells evade current therapy. Blocking the inhibition of wild-type p53 by MDM2 in cancer cells should reactivate p53s tumour suppressor functions and enhance current cancer treatments. MI-63 is a novel non-peptide small molecule that has shown strong binding affinity (Ki=3 nM) for MDM2; however, its effects on paediatric cancer cells and the specific mechanism of tumour suppressor reactivation have not been evaluated.Methods:Rhabdomyosarcoma (RMS), the most common childhood soft tissue sarcoma, expresses either wild-type or mutant p53 protein. We examined the inhibitory effects of MI-63 in embryonal RMS (ERMS) and alveolar RMS (ARMS) cell lines expressing wild-type or mutated p53.Results:Treatment with MI-63 reduced cell viability by 13.4% and by <1%, respectively, at 72 h in both RH36 and RH18 cell lines expressing wild-type p53. In contrast, RH30 and RD2 cells expressing p53 mutants are resistant to MI-63 treatment. An increased expression of p53, p21WAF1, and Bax protein was observed after treatment with MI-63 in RMS cells with wild-type p53, and apoptosis was confirmed by cleaved PARP and caspase-3 expression. However, RD2 and RH30 RMS cells, as well as human normal skeletal muscle cells, showed a minimal increase in p53 signalling and no induction of cleaved PARP and caspase-3. MI-63 was compared with Nutlin-3, a known MDM2 inhibitor, and was found to be more potent in the inhibition of cell proliferation/viability. Further, synergy was observed when MI-63 was used in combination with doxorubicin.Conclusion:These results indicate that MI-63 is a potent therapeutic agent for RMS cells expressing wild-type p53 protein.


BMC Cancer | 2008

STAT3 can be activated through paracrine signaling in breast epithelial cells

Jacqueline C. Lieblein; Sarah Ball; Brian Hutzen; A. Kate Sasser; Huey Jen Lin; Tim H M Huang; Brett Hall; Jiayuh Lin

BackgroundMany cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood.MethodsConditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis.ResultsOur results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells.ConclusionThese results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with cell proliferation. Understanding how IL-6 and other soluble factors may lead to STAT3 activation via the tumor microenvironment will provide new therapeutic regimens for breast carcinomas and other cancers with elevated p-STAT3 levels.


PLOS ONE | 2013

Evaluation of STAT3 Signaling in ALDH+ and ALDH+/CD44+/CD24− Subpopulations of Breast Cancer Cells

Li Lin; Brian Hutzen; Hsiu Fang Lee; Zhengang Peng; Wenlong Wang; Chongqiang Zhao; Huey Jen Lin; Duxin Sun; Pui Kai Li; Chenglong Li; Hasan Korkaya; Max S. Wicha; Jiayuh Lin

Background STAT3 activation is frequently detected in breast cancer and this pathway has emerged as an attractive molecular target for cancer treatment. Recent experimental evidence suggests ALDH-positive (ALDH+), or cell surface molecule CD44-positive (CD44+) but CD24-negative (CD24−) breast cancer cells have cancer stem cell properties. However, the role of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24− subpopulations of breast cancer cells is unknown. Methods and Results We examined STAT3 activation in ALDH+ and ALDH+/CD44+/CD24− subpopulations of breast cancer cells by sorting with flow cytometer. We observed ALDH-positive (ALDH+) cells expressed higher levels of phosphorylated STAT3 compared to ALDH-negative (ALDH−) cells. There was a significant correlation between the nuclear staining of phosphorylated STAT3 and the expression of ALDH1 in breast cancer tissues. These results suggest that STAT3 is activated in ALDH+ subpopulations of breast cancer cells. STAT3 inhibitors Stattic and LLL12 inhibited STAT3 phosphorylation, reduced the ALDH+ subpopulation, inhibited breast cancer stem-like cell viability, and retarded tumorisphere-forming capacity in vitro. Similar inhibition of STAT3 phosphorylation, and breast cancer stem cell viability were observed using STAT3 ShRNA. In addition, LLL12 inhibited STAT3 downstream target gene expression and induced apoptosis in ALDH+ subpopulations of breast cancer cells. Furthermore, LLL12 inhibited STAT3 phosphorylation and tumor cell proliferation, induced apoptosis, and suppressed tumor growth in xenograft and mammary fat pad mouse models from ALDH+ breast cancer cells. Similar in vitro and tumor growth in vivo results were obtained when ALDH+ cells were further selected for the stem cell markers CD44+ and CD24−. Conclusion These studies demonstrate an important role for STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24− subpopulations of breast cancer cells which may have cancer stem cell properties and suggest that pharmacologic inhibition of STAT3 represents an effective strategy to selectively target the cancer stem cell-like subpopulation.


Cancer Cell International | 2009

Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells

Brian Hutzen; William L. Willis; Sarah Jones; Ling-Ping Cen; Stephanie Deangelis; Beng Fuh; Jiayuh Lin

The Signal Transducer and Activator of Transcription (STAT) proteins comprise a family of latent transcription factors with diverse functions. STAT3 has well established roles in cell proliferation, growth and survival, and its persistent activation has been detected with high frequency in many human cancers. As constitutive activation of STAT3 appears to be vital for the continued survival of these cancerous cells, it has emerged as an attractive target for chemotherapeutics. We examined whether the inhibitory activities of bioactive compounds from cruciferous vegetables, such as Benzyl isothiocyanate (BITC) and sulforaphane, extended to STAT3 activation in PANC-1 human pancreatic cancer cells. BITC and sulforaphane were both capable of inhibiting cell viability and inducing apoptosis in PANC-1. Sulforaphane had minimal effect on the direct inhibition of STAT3 tyrosine phosphorylation, however, suggesting its inhibitory activities are most likely STAT3-independent. Conversely, BITC was shown to inhibit the tyrosine phosphorylation of STAT3, but not the phosphorylation of ERK1/2, MAPK and p70S6 kinase. These results suggest that STAT3 may be one of the targets of BITC-mediated inhibition of cell viability in PANC-1 cancer cells. In addition, we show that BITC can prevent the induction of STAT3 activation by Interleukin-6 in MDA-MB-453 breast cancer cells. Furthermore, combinations of BITC and sulforaphane inhibited cell viability and STAT3 phosphorylation more dramatically than either agent alone. These findings suggest that the combination of the dietary agents BITC and sulforaphane has potent inhibitory activity in pancreatic cancer cells and that they may have translational potential as chemopreventative or therapeutic agents.


Neuro-oncology | 2012

Oncolytic measles virus prolongs survival in a murine model of cerebral spinal fluid-disseminated medulloblastoma.

Adam W. Studebaker; Brian Hutzen; Christopher R. Pierson; Stephen J. Russell; Evanthia Galanis; Corey Raffel

Medulloblastoma is the most common malignant brain tumor of childhood. Although the survival rate of afflicted children has improved considerably over the past several years, a subset of these patients will present with disseminated disease and face a much bleaker prognosis. In addition, patients may present with disseminated disease at recurrence. We previously demonstrated the efficacy of a recombinant oncolytic measles virus (MV) to treat localized medulloblastoma in a mouse xenograft model. In the present study, we sought to extend our findings to the treatment of disseminated disease. To this end, we developed and characterized a mouse xenograft model of disseminated medulloblastoma using serial bioluminescent imaging techniques in combination with histopathological examination. Mice injected with medulloblastoma cells into their right lateral ventricle showed tumor growth in their ventricles and in both intracranial and spinal subarachnoid spaces, closely recapitulating the human disease. Subsequent intraventricular administration of MV resulted in stabilization and shrinkage of the tumor, significantly prolonging the survival of the treated animals, compared with those treated with an inactivated virus. These data demonstrate that oncolytic MV may be of use in treating disseminated medulloblastoma. In addition, our protocol of intraventricular tumor cell injection, followed by bioluminescent imaging coupled with histopathological examination, provides a model for use in evaluating future recombinant oncolytic viruses and other preclinical therapeutic approaches for disseminated medulloblastoma.

Collaboration


Dive into the Brian Hutzen's collaboration.

Top Co-Authors

Avatar

Timothy P. Cripe

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jiayuh Lin

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Chun-Yu Chen

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pin-Yi Wang

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam W. Studebaker

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Pierson

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe Conner

Southern General Hospital

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Leddon

Nationwide Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge