Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian J. Tindall is active.

Publication


Featured researches published by Brian J. Tindall.


Systematic and Applied Microbiology | 1990

A Comparative Study of the Lipid Composition of Halobacterium saccharovorum from Various Sources

Brian J. Tindall

Summary Investigations on the taxonomic status of the extremely halophilic archaebacterium Halobacterium saccharovorum have shown that it is deserving of separate species status, but that there is some dispute as to its exact position within the taxonomy of the family Halobacteriaceae . In order to clarify the position of H. saccharovorum within the family Halobacteriaceae a chemotaxonomic study of this species was undertaken using strains obtained from five different sources. This work shows that one of the strains is anomalous and should not be included in the species H. saccharovorum .


International Journal of Systematic and Evolutionary Microbiology | 2010

Notes on the characterization of prokaryote strains for taxonomic purposes.

Brian J. Tindall; Ramon Rosselló-Móra; Hans-Jürgen Busse; Wolfgang Ludwig; Peter Kämpfer

Taxonomy relies on three key elements: characterization, classification and nomenclature. All three elements are dynamic fields, but each step depends on the one which precedes it. Thus, the nomenclature of a group of organisms depends on the way they are classified, and the classification (among other elements) depends on the information gathered as a result of characterization. While nomenclature is governed by the Bacteriological Code, the classification and characterization of prokaryotes is an area that is not formally regulated and one in which numerous changes have taken place in the last 50 years. The purpose of the present article is to outline the key elements in the way that prokaryotes are characterized, with a view to providing an overview of some of the pitfalls commonly encountered in taxonomic papers.


Nature | 2009

A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.

Dongying Wu; Philip Hugenholtz; Konstantinos Mavromatis; Rüdiger Pukall; Eileen Dalin; Natalia Ivanova; Victor Kunin; Lynne Goodwin; Martin Wu; Brian J. Tindall; Sean D. Hooper; Amrita Pati; Athanasios Lykidis; Stefan Spring; Iain Anderson; Patrik D’haeseleer; Adam Zemla; Alla Lapidus; Matt Nolan; Alex Copeland; Cliff Han; Feng Chen; Jan-Fang Cheng; Susan Lucas; Cheryl A. Kerfeld; Elke Lang; Sabine Gronow; Patrick Chain; David Bruce; Edward M. Rubin

Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic ‘phylogenomic’ efforts to compile a phylogeny-driven ‘Genomic Encyclopedia of Bacteria and Archaea’ in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.


Archives of Microbiology | 1998

Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration

Christof Holliger; Dittmar Hahn; Hermie J. M. Harmsen; Wolfgang Ludwig; Wolfram Schumacher; Brian J. Tindall; Francisco Vazquez; Norbert Weiss; Alexander J. B. Zehnder

Abstract The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It utilized only H2 as an electron donor and tetrachloroethene and trichloroethene as electron acceptors in an anaerobic respiration process; it could not grow fermentatively. Acetate served as a carbon source in a defined medium containing iron as the sole trace element, the two vitamins thiamine and cyanocobalamin, and the three amino acids arginine, histidine, and threonine. The cells contained menaquinones and b-type cytochromes. The G+C content of the DNA was 45.3 ± 0.3 mol%. The cell wall consisted of type-A3γ peptidoglycan with ll-diaminopimelic acid and one glycine as an interpeptide bridge. The cells are surrounded by an S-layer; an outer membrane was absent. Comparative sequence analysis of the 16S rRNA sequence showed that PER-K23 is related to gram-positive bacteria with a low G+C content of the DNA. Based on the cytological, physiological, and phylogenetic characterization, it is proposed to affiliate the isolate to a new genus, Dehalobacter, with PER-K23 as the type strain of the new species Dehalobacter restrictus.


International Journal of Systematic and Evolutionary Microbiology | 1999

Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter.

Wolf-Rainer Abraham; Carsten Strömpl; Holger Meyer; Sabine Lindholst; Edward R. B. Moore; Ruprecht Christ; Marc Vancanneyt; Brian J. Tindall; Antonio Bennasar; John Smit; Michael Tesar

The genus Caulobacter is composed of prosthecate bacteria often specialized for oligotrophic environments. The taxonomy of Caulobacter has relied primarily upon morphological criteria: a strain that visually appeared to be a member of the Caulobacter has generally been called one without challenge. A polyphasic approach, comprising 16S rDNA sequencing, profiling restriction fragments of 16S-23S rDNA interspacer regions, lipid analysis, immunological profiling and salt tolerance characterizations, was used to clarify the taxonomy of 76 strains of the genera Caulobacter. Brevundimonas, Hyphomonas and Mycoplana. The described species of the genus Caulobacter formed a paraphyletic group with Caulobacter henricii, Caulobacter fusiformis, Caulobacter vibrioides and Mycoplana segnis (Caulobacter segnis comb. nov.) belonging to Caulobacter sensu stricto. Caulobacter bacteroides (Brevundimonas bacteroides comb. nov.), C. henricii subsp. aurantiacus (Brevundimonas aurantiaca comb. nov.), Caulobacter intermedius (Brevundimonas intermedia comb. nov.), Caulobacter subvibrioides (Brevundimonas subvibrioides comb. nov.), C. subvibrioides subsp. albus (Brevundimonas alba comb. nov.), Caulobacter variabilis (Brevundimonas variabilis comb. nov.) and Mycoplana bullata belong to the genus Brevundimonas. The halophilic species Caulobacter maris and Caulobacter halobacteroides are different from these two genera and form the genus Maricaulis gen. nov. with Maricaulis maris as the type species. Caulobacter leidyia was observed to cluster with species of the genus Sphingomonas. Caulobacter crescentus is synonymous with C. vibrioides and C. halobacteroides is synonymous with Maricaulis maris as determined by these analyses and DNA-DNA hybridization. Biomarkers discerning these different genera were determined. The necessary recombinations have been proposed and a description of Maricaulis is presented.


International Journal of Systematic and Evolutionary Microbiology | 2013

Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium

Maria del Carmen Montero-Calasanz; Markus Göker; Manfred Rohde; Cathrin Spröer; Peter Schumann; Hans-Jürgen Busse; Michael Schmid; Brian J. Tindall; Hans-Peter Klenk; M. Camacho

A novel non-motile, Gram-staining-negative, yellow-pigmented bacterium, designated AG13(T), isolated from a rain water pond at a plant nursery in Spain and characterized as a plant-growth-promoting bacterium, was investigated to determine its taxonomic status. The isolate grew best over a temperature range of 15-40 °C, at pH 5.0-8.0 and with 0-4 % (w/v) NaCl. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Chryseobacterium. The DNA G+C content of the novel strain was 37.2 mol%. The strain had a polyamine pattern with sym-homospermidine as the major compound and produced flexirubin-type pigments. MK-6 was the dominant menaquinone and the major cellular fatty acids were iso-C15 : 0, C17 : 1ω9c and iso-C17 : 0 3-OH. The main polar lipids were phosphatidylethanolamine, aminolipids and several unidentified lipids. The 16S rRNA gene showed 92.0-97.2 % sequence similarity with those of the members of the genus Chryseobacterium. Based on chemotaxonomic and phenotypic traits, and DNA-DNA hybridizations with the type strains of the most closely related species, the isolate is proposed to represent a novel species, Chryseobacterium hispalense, type strain AG13(T) ( = DSM 25574(T) = CCUG 63019(T)). Emended descriptions of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium are also provided.


Extremophiles | 2001

16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica

Evelyne Brambilla; Hans Hippe; Anja Hagelstein; Brian J. Tindall; Erko Stackebrandt

The prokaryotic diversity of aerobic and anaerobic bacterial isolates and of bacterial and archaeal 16S rDNA clones was determined for a microbial mat sample from the moated region of Lake Fryxell, McMurdo Dry Valleys, Antarctica. Among the anaerobic bacteria, members of Clostridium estertheticum and some other psychrotolerant strains dominated whereas methanogens and other Archaea were lacking. Isolates highly related to Flavobacterium hibernum, Janthinobacterium lividum, and Arthrobacter flavus were among the aerobic bacteria most frequently isolated. Assessment of more than 350 partial 16S rDNA clone sequences of libraries generated by Bacteria- and Archaea-specific PCR primers revealed a rich spectrum of bacterial diversity but only two different archaeal clone sequences. Among the Bacteria, representative sequences belonged to the class Proteobacteria, order Verrucomicrobiales, class Actinobacteria, Clostridium/Bacillus subphylum of Gram-positives, and the Cytophaga-Flavobacterium-Bacteroides phylum. The clones formed about 70 higher taxonomy groups (<98% sequence similarity) and 133 potential species, i.e., groups of clones sharing greater than 98% similarity. Only rarely were clone sequences found to be highly related to Lake Fryxell isolates and to strains of described species. Subsequent analysis of ten sequencing batches of 36 individual clones indicated that the diversity might be still higher than had been assessed.


Molecular Microbiology | 2006

The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes

Kathrin Thedieck; Torsten Hain; Walid Mohamed; Brian J. Tindall; Manfred Nimtz; Trinad Chakraborty; Jürgen Wehland; Lothar Jänsch

Pathogenic bacteria have to cope with defence mechanisms mediated by adaptive and innate immunity of the host cells. Cationic antimicrobial peptides (CAMPs) represent one of the most effective components of the host innate immune response. Here we establish the function of Lmo1695, a member of the VirR‐dependent virulence regulon, recently identified in Listeria monocytogenes. Lmo1695 encodes a membrane protein of 98 kDa with strong homology to the multiple peptide resistance factor (MprF) of Staphylococcus aureus. Like staphylococcal MprF, we found that Lmo1695 is involved in the synthesis of the membrane phospholipid lysylphosphatidylglycerol (L‐PG). In addition, Lmo1695 is also essential for lysinylation of diphosphatidylglycerol (DPG), another phospholipid widely distributed in bacterial membranes. A Δlmo1695 mutant lacking the lysinylated phospholipids was particularly susceptible to CAMPs of human and bacterial origin. The mutant strain infected both epithelial cells and macrophages only poorly and was attenuated for virulence when tested in a mouse model of infection. Lmo1695 is a member of a growing list of survival factors which enable growth of L. monocytogenes in different environments.


PLOS Biology | 2014

Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

Nikos C. Kyrpides; Philip Hugenholtz; Jonathan A. Eisen; Tanja Woyke; Markus Göker; Charles Thomas Parker; Rudolf Amann; Brian Beck; Patrick Chain; Jongsik Chun; Rita R. Colwell; Antoine Danchin; Peter Dawyndt; Tom Dedeurwaerdere; Edward F. DeLong; John C. Detter; Paul De Vos; Timothy J. Donohue; Xiu Zhu Dong; Dusko S. Ehrlich; Claire M. Fraser; Richard A. Gibbs; Jack A. Gilbert; Paul Gilna; Frank Oliver Glöckner; Janet K. Jansson; Jay D. Keasling; Rob Knight; David P. Labeda; Alla Lapidus

This manuscript calls for an international effort to generate a comprehensive catalog from genome sequences of all the archaeal and bacterial type strains.


International Journal of Systematic and Evolutionary Microbiology | 2000

Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah

Michael Wainø; Brian J. Tindall; Kjeld Ingvorsen

Strain AX-2T (T = type strain) was isolated from sediment of Great Salt Lake, Utah, USA. Optimal salinity for growth was 27% (w/v) NaCl and only a few carbohydrates supported growth of the strain. Strain AX-2T did not grow on complex substrates such as yeast extract or peptone. 16S rRNA analysis revealed that strain AX-2T was a member of the phyletic group defined by the family Halobacteriaceae, but there was a low degree of similarity to other members of this family. The polar lipid composition comprising phosphatidyl glycerol, the methylated derivative of diphosphatidyl glycerol, triglycosyl diethers and sulfated triglycosyl diethers, but not phosphatidyl glycerosulfate, was not identical to that of any other aerobic, halophilic species. On the basis of the data presented, it is proposed that strain AX-2T should be placed in a new taxon, for which the name Halorhabdus utahensis is appropriate. The type strain is strain AX-2T (= DSM 12940T).

Collaboration


Dive into the Brian J. Tindall's collaboration.

Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia Ivanova

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Manfred Rohde

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alla Lapidus

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Amy Chen

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Pitluck

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Susan Lucas

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge