Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian K. Lamb is active.

Publication


Featured researches published by Brian K. Lamb.


Global Biogeochemical Cycles | 1992

Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry

Fred C. Fehsenfeld; Jack Calvert; Ray Fall; Paul D. Goldan; Alex Guenther; C. Nicholas Hewitt; Brian K. Lamb; Shaw Liu; M. Trainer; Hal Westberg; P. R. Zimmerman

Vegetation provides a major source of reactive carbon entering the atmosphere. These compounds play an important role in (1) shaping global tropospheric chemistry, (2) regional photochemical oxidant formation, (3) balancing the global carbon cycle, and (4) production of organic acids which contribute to acidic deposition in rural areas. Present estimates place the total annual global emission of these compounds between approximately 500 and 825 Tg yr−1. The volatile olefinic compounds, such as isoprene and the monoterpenes, are thought to constitute the bulk of these emissions. However, it is becoming increasingly clear that a variety of partially oxidized hydrocarbons, principally alcohols, are also emitted. The available information concerning the terrestrial vegetation as sources of volatile organic compounds is reviewed. The biochemical processes associated with these emissions of the compounds and the atmospheric chemistry of the emitted compounds are discussed.


Journal of Atmospheric Chemistry | 1992

Sulfur emissions to the atmosphere from natural sourees

T. S. Bates; Brian K. Lamb; A. Guenther; Jane Dignon; R. E. Stoiber

Emissions of sulfur gases from both natural and anthropogenic sources strongly influence the chemistry of the atmosphere. To assess the relative importance of these sources we have combined the measurements of sulfur gases and fluxes during the past decade to create a global emission inventory. The inventory, which is divided into 12 latitude belts, takes into account the seasonal dependence of sulfur emissions from biogenic sources. The total emissions of sulfur gases from natural sources are approximately 0.79 Tmol S/a. These emissions are 16% of the total sulfur emissions in the Northern Hemisphere and 58% in the Southern Hemisphere. The inventory clearly shows the impact of anthropogenic sulfur emissions in the region between 35° and 50°N.


Bulletin of the American Meteorological Society | 2000

Biogenic hydrocarbons in the atmospheric boundary layer: A review

Jose D. Fuentes; Manuel T. Lerdau; R. Atkinson; Dennis D. Baldocchi; J. W. Bottenheim; P. Ciccioli; Brian K. Lamb; Christopher D. Geron; Lianhong Gu; Alex Guenther; Thomas D. Sharkey; William R. Stockwell

Nonmethane hydrocarbons are ubiquitous trace atmospheric constituents yet they control the oxidation capacity of the atmosphere. Both anthropogenic and biogenic processes contribute to the release of hydrocarbons to the atmosphere. In this manuscript, the state of the science concerning biosynthesis, transport, and chemical transformation of hydrocarbons emitted by the terrestrial biosphere is reviewed. In particular, the focus is on isoprene, monoterpenes, and oxygen-ated hydrocarbons. The generated science during the last 10 years is reviewed to explain and quantify hydrocarbon emissions from vegetation and to discern impacts of biogenic hydrocarbons on local and regional atmospheric chemistry. Furthermore, the physiological and environmental processes controlling biosynthesis and production of hydrocarbon compounds are reported on. Many advances have been made on measurement and modeling approaches developed to quantify hydrocarbon emissions from leaves and forest ecosystems. A synthesis of the atmospheric chemistry of biogenic hydrocarbons and their role in the formation of oxidants and aerosols is presented. The integration of biogenic hydrocarbon kinetics and atmospheric physics into mathematical modeling systems is examined to assess the contribution of biogenic hydrocarbons to the formation of oxidants and aerosols, thereby allowing us to study their impacts on the earths climate system and to develop strategies to reduce oxidant precursors in affected regions.


Environmental Science & Technology | 1994

Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique.

K. A. Johnson; Mark. Huyler; Hal Westberg; Brian K. Lamb; P. R. Zimmerman

The purpose of this paper is to describe a method for determining methane emission factors for cattle. The technique involves the direct measurement of methane emissions from livestock in their natural environment. A small permeation tube containing SF[sub 6] is placed in the cows rumen, and SF[sub 6] and CH[sub 4] concentrations are measured near the mouth and nostrils of the cow. The SF[sub 6] release provides a way to account for the dilution of gases near the animals mouth. The CH[sub 4] emission rate can be calculated from the known SF[sub 6] emission rate and the measured SF[sub 6] and CH[sub 4] concentrations. The tracer method described provides an easy means for acquiring a large methane emissions data base from domestic livestock. The low cost and simplicity should make it possible to monitor a large number of animals in countries throughout the world. An expanded data base of this type helps to reduce uncertainty in the ruminant contribution to the global methane budget. 18 refs., 3 figs., 3 tabs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Measurements of methane emissions at natural gas production sites in the United States

David T. Allen; Vincent M. Torres; James Thomas; David W. Sullivan; Matthew T. Harrison; Al Hendler; Scott C. Herndon; Charles E. Kolb; Matthew P. Fraser; A. Daniel Hill; Brian K. Lamb; Jennifer Lynne Miskimins; Robert F. Sawyer; John H. Seinfeld

Significance This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States. The measurements indicate that well completion emissions are lower than previously estimated; the data also show emissions from pneumatic controllers and equipment leaks are higher than Environmental Protection Agency (EPA) national emission projections. Estimates of total emissions are similar to the most recent EPA national inventory of methane emissions from natural gas production. These measurements will help inform policymakers, researchers, and industry, providing information about some of the sources of methane emissions from the production of natural gas, and will better inform and advance national and international scientific and policy discussions with respect to natural gas development and use. Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).


Journal of Geophysical Research | 2006

Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column

Paul I. Palmer; Dorian S. Abbot; Tzung-May Fu; Daniel J. Jacob; Kelly Chance; Thomas P. Kurosu; Alex Guenther; Christine Wiedinmyer; Jenny Stanton; Michael J. Pilling; Shelley Pressley; Brian K. Lamb; Anna Louise Sumner

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D12315, doi:10.1029/2005JD006689, 2006 Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column Paul I. Palmer, 1,2 Dorian S. Abbot, 1 Tzung-May Fu, 1 Daniel J. Jacob, 1 Kelly Chance, 3 Thomas P. Kurosu, 3 Alex Guenther, 4 Christine Wiedinmyer, 4 Jenny C. Stanton, 5 Michael J. Pilling, 5 Shelley N. Pressley, 6 Brian Lamb, 6 and Anne Louise Sumner 7 Received 20 September 2005; revised 19 December 2005; accepted 14 February 2006; published 27 June 2006. [ 1 ] Quantifying isoprene emissions using satellite observations of the formaldehyde (HCHO) columns is subject to errors involving the column retrieval and the assumed relationship between HCHO columns and isoprene emissions, taken here from the GEOS- CHEM chemical transport model. Here we use a 6-year (1996–2001) HCHO column data set from the Global Ozone Monitoring Experiment (GOME) satellite instrument to (1) quantify these errors, (2) evaluate GOME-derived isoprene emissions with in situ flux measurements and a process-based emission inventory (Model of Emissions of Gases and Aerosols from Nature, MEGAN), and (3) investigate the factors driving the seasonal and interannual variability of North American isoprene emissions. The error in the GOME HCHO column retrieval is estimated to be 40%. We use the Master Chemical Mechanism (MCM) to quantify the time-dependent HCHO production from isoprene, a- and b-pinenes, and methylbutenol and show that only emissions of isoprene are detectable by GOME. The time-dependent HCHO yield from isoprene oxidation calculated by MCM is 20–30% larger than in GEOS-CHEM. GOME-derived isoprene fluxes track the observed seasonal variation of in situ measurements at a Michigan forest site with a 30% bias. The seasonal variation of North American isoprene emissions during 2001 inferred from GOME is similar to MEGAN, with GOME emissions typically 25% higher (lower) at the beginning (end) of the growing season. GOME and MEGAN both show a maximum over the southeastern United States, but they differ in the precise location. The observed interannual variability of this maximum is 20–30%, depending on month. The MEGAN isoprene emission dependence on surface air temperature explains 75% of the month-to-month variability in GOME-derived isoprene emissions over the southeastern United States during May–September 1996–2001. Citation: Palmer, P. I., et al. (2006), Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, J. Geophys. Res., 111, D12315, doi:10.1029/2005JD006689. 1. Introduction [ 2 ] Emissions of volatile organic compounds (VOCs) from the terrestrial biosphere have important implications Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Now at the School of Earth and Environment, University of Leeds, Leeds, UK. Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachu- setts, USA. National Center for Atmospheric Research, Boulder, Colorado, USA. Department of Chemistry, University of Leeds, Leeds, UK. Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA. Battelle, Columbus, Ohio, USA. Copyright 2006 by the American Geophysical Union. 0148-0227/06/2005JD006689 for tropospheric ozone (O 3 ) [Wang and Shallcross, 2000], organic aerosols [Claeys et al., 2004], and climate change [Sanderson et al., 2003]. Local VOC emission data, representative of scales less than 1 km, are difficult to extrapolate, and consequently the magnitude and variabil- ity of these emissions is not well understood on conti- nental scales. Standard emission inventories based on ecosystem data and emission factors [Guenther et al., 2005] are poorly constrained. We have shown previously that observations of formaldehyde (HCHO) columns from the Global Ozone Monitoring Experiment (GOME) satel- lite instrument [Chance et al., 2000] provide information to estimate biogenic VOC emissions, specifically isoprene emissions, on a global scale and with resolution of the order of 100 km [Palmer et al., 2003]. We examine here the quantitative value of these data for better understand- D12315 1 of 14


Atmospheric Environment. Part A. General Topics | 1993

A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model

Brian K. Lamb; Hal Westberg; Thomas Pierce

Abstract A biogenic hydrocarbon emission inventory system, developed for acid deposition and regional oxidant modeling, is described, and results for a U.S. emission inventory are presented. For deciduous and coniferous forests, scaling relationships are used to account for canopy effects upon solar radiation temperature, humidity and wind speed as a function of height through the canopy. Leaf temperature is calculated iteratively from a leaf energy balance as a function of height through the canopy. The predicted light and temperature levels are used with mean emprical emission rate factors and laboratory emission algorithms to predict hydrocarbon emission rates. For application to a U.S. inventory, diurnal emission fluxes of isoprene, α-pinene, other monoterpenes adn otehr hydrocarbons are predicted for eight land cover classes by state climatic division by month. The total U.S. emissions range from 22 to 50 Tg yr −1 depending upon the formulation of different emission rate factors. In the case where the forest canopy model is not used, the isoprene emissions increase by 50% and terpene emissions increase by 6%. In case study analyses, the predicted leaf temperatures were within 1–2°C of observed for a deciduous forest, and predicted emissions were within a factor of two of observations. Further evaluation of the inventory using field measurements is required to determine the overall accuracy of the emission estimates.


Journal of Geophysical Research | 1996

Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques

Alex Guenther; W. Baugh; Kenneth J. Davis; Gary A. Hampton; Peter Harley; L. Klinger; Lee A. Vierling; P. R. Zimmerman; Eugene Allwine; Steve Dilts; Brian K. Lamb; Hal Westberg; Dennis D. Baldocchi; Chris Geron; Thomas Pierce

Isoprene fluxes were estimated using eight different measurement techniques at a forested site near Oak Ridge, Tennessee, during July and August 1992. Fluxes from individual leaves and entire branches were estimated with four enclosure systems, including one system that controls leaf temperature and light. Variations in isoprene emission with changes in light, temperature, and canopy depth were investigated with leaf enclosure measurements. Representative emission rates for the dominant vegetation in the region were determined with branch enclosure measurements. Species from six tree genera had negligible isoprene emissions, while significant emissions were observed for Quercus, Liquidambar, and Nyssa species. Above-canopy isoprene fluxes were estimated with surface layer gradients and relaxed eddy accumulation measurements from a 44-m tower. Midday net emission fluxes from the canopy were typically 3 to 5 mg C m−2 h−1, although net isoprene deposition fluxes of −0.2 to −2 mg C m−2 h−1 were occasionally observed in early morning and late afternoon. Above-canopy CO2 fluxes estimated by eddy correlation using either an open path sensor or a closed path sensor agreed within ±5%. Relaxed eddy accumulation estimates of CO2 fluxes were within 15% of the eddy correlation estimates. Daytime isoprene mixing ratios in the mixed layer were investigated with a tethered balloon sampling system and ranged from 0.2 to 5 ppbv, averaging 0.8 ppbv. The isoprene mixing ratios in the mixed layer above the forested landscape were used to estimate isoprene fluxes of 2 to 8 mg C m−2 h−1 with mixed layer gradient and mixed layer mass balance techniques. Total foliar density and dominant tree species composition for an approximately 8100 km2 region were estimated using high-resolution (30 m) satellite data with classifications supervised by ground measurements. A biogenic isoprene emission model used to compare flux measurements, ranging from leaf scale (10 cm2) to landscape scale (102 km2), indicated agreement to within ±25%, the uncertainty associated with these measurement techniques. Existing biogenic emission models use isoprene emission rate capacities that range from 14.7 to 70 μg C g−1 h−1 (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m−2 s−1) for oak foliage. An isoprene emission rate capacity of 100 μg C g−1 h−1 for oaks in this region is more realistic and is recommended, based on these measurements.


Bulletin of the American Meteorological Society | 2009

A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations.

Christopher P. Weaver; Xin-Zhong Liang; Jinhong Zhu; P. J. Adams; P. Amar; J. Avise; Michael Caughey; Jack Chen; R. C. Cohen; E. Cooter; J. P. Dawson; Robert C. Gilliam; Alice B. Gilliland; Allen H. Goldstein; A. Grambsch; D. Grano; Alex Guenther; W. I. Gustafson; Robert A. Harley; Sheng He; B. Hemming; Christian Hogrefe; Ho Chun Huang; Sherri W. Hunt; Daniel J. Jacob; Patrick L. Kinney; Kenneth E. Kunkel; Jean-Francois Lamarque; Brian K. Lamb; Narasimhan K. Larkin

This paper provides a synthesis of results that have emerged from recent modeling studies of the potential sensitivity of U.S. regional ozone (O3) concentrations to global climate change (ca. 2050). This research has been carried out under the auspices of an ongoing U.S. Environmental Protection Agency (EPA) assessment effort to increase scientific understanding of the multiple complex interactions among climate, emissions, atmospheric chemistry, and air quality. The ultimate goal is to enhance the ability of air quality managers to consider global change in their decisions through improved characterization of the potential effects of global change on air quality, including O3 The results discussed here are interim, representing the first phase of the EPA assessment. The aim in this first phase was to consider the effects of climate change alone on air quality, without accompanying changes in anthropogenic emissions of precursor pollutants. Across all of the modeling experiments carried out by the differe...


Journal of Atmospheric Chemistry | 1991

Measurement of isoprene and its atmospheric oxidation products in a central Pennsylvania deciduous forest

Randal S. Martin; Hal Westberg; Eugene Allwine; Lynne Ashman; J. Carl Farmer; Brian K. Lamb

Ambient concentrations of isoprene and several of its atmospheric oxidation productsmethacrolein, methylvinyl ketone, formaldehyde, formic acid, acetic acid, and pyruvic acid-were measured in a central Pennsylvania deciduous forest during the summer of 1988. Isoprene concentrations ranged from near zero at night to levels in excess of 30 ppbv during daylight hours. During fair weather periods, midday isoprene levels normally fell in the 5–10 ppbv range. Methacrolein and methylvinyl ketone levels ranged from less than 0.5 ppbv to greater than 3 ppbv with average midday concentrations in the 1 to 2 ppbv range. The diurnal behavior of formaldehyde paralleled that of isoprene with ambient concentrations lowest (∼1 ppbv) in the predawn hours and highest (>9.0 ppbv) during the afternoon. The organic acids peaked during the midday period with average ambient concentration of 2.5, 2.0, and 0.05 ppbv for formic, acetic, and pyruvic acid, respectively. These data indicate that oxygenated organics comprise a large fraction of the total volatile organic carbon containing species present in rural, forested regions of the eastern United States. Consequently, these compounds need to be included in photochemical models that attempt to simulate oxidant behavior and/or atmospheric acidity in these forested regions.

Collaboration


Dive into the Brian K. Lamb's collaboration.

Top Co-Authors

Avatar

Hal Westberg

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Eugene Allwine

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Shelley Pressley

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Alex Guenther

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Luisa T. Molina

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joseph K. Vaughan

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Gene Allwine

Washington State University

View shared research outputs
Top Co-Authors

Avatar

George H. Mount

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Holly Peterson

Montana Tech of the University of Montana

View shared research outputs
Researchain Logo
Decentralizing Knowledge