Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Kulis is active.

Publication


Featured researches published by Brian Kulis.


international conference on machine learning | 2007

Information-theoretic metric learning

Jason V. Davis; Brian Kulis; Prateek Jain; Suvrit Sra; Inderjit S. Dhillon

In this paper, we present an information-theoretic approach to learning a Mahalanobis distance function. We formulate the problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the distance function. We express this problem as a particular Bregman optimization problem---that of minimizing the LogDet divergence subject to linear constraints. Our resulting algorithm has several advantages over existing methods. First, our method can handle a wide variety of constraints and can optionally incorporate a prior on the distance function. Second, it is fast and scalable. Unlike most existing methods, no eigenvalue computations or semi-definite programming are required. We also present an online version and derive regret bounds for the resulting algorithm. Finally, we evaluate our method on a recent error reporting system for software called Clarify, in the context of metric learning for nearest neighbor classification, as well as on standard data sets.


knowledge discovery and data mining | 2004

Kernel k-means: spectral clustering and normalized cuts

Inderjit S. Dhillon; Yuqiang Guan; Brian Kulis

Kernel k-means and spectral clustering have both been used to identify clusters that are non-linearly separable in input space. Despite significant research, these methods have remained only loosely related. In this paper, we give an explicit theoretical connection between them. We show the generality of the weighted kernel k-means objective function, and derive the spectral clustering objective of normalized cut as a special case. Given a positive definite similarity matrix, our results lead to a novel weighted kernel k-means algorithm that monotonically decreases the normalized cut. This has important implications: a) eigenvector-based algorithms, which can be computationally prohibitive, are not essential for minimizing normalized cuts, b) various techniques, such as local search and acceleration schemes, may be used to improve the quality as well as speed of kernel k-means. Finally, we present results on several interesting data sets, including diametrical clustering of large gene-expression matrices and a handwriting recognition data set.


european conference on computer vision | 2010

Adapting visual category models to new domains

Kate Saenko; Brian Kulis; Mario Fritz; Trevor Darrell

Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.


international conference on computer vision | 2009

Kernelized locality-sensitive hashing for scalable image search

Brian Kulis; Kristen Grauman

Fast retrieval methods are critical for large-scale and data-driven vision applications. Recent work has explored ways to embed high-dimensional features or complex distance functions into a low-dimensional Hamming space where items can be efficiently searched. However, existing methods do not apply for high-dimensional kernelized data when the underlying feature embedding for the kernel is unknown. We show how to generalize locality-sensitive hashing to accommodate arbitrary kernel functions, making it possible to preserve the algorithms sub-linear time similarity search guarantees for a wide class of useful similarity functions. Since a number of successful image-based kernels have unknown or incomputable embeddings, this is especially valuable for image retrieval tasks. We validate our technique on several large-scale datasets, and show that it enables accurate and fast performance for example-based object classification, feature matching, and content-based retrieval.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2007

Weighted Graph Cuts without Eigenvectors A Multilevel Approach

Inderjit S. Dhillon; Yuqiang Guan; Brian Kulis

A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods - in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods such as Metis have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis, and gene network analysis.


computer vision and pattern recognition | 2011

What you saw is not what you get: Domain adaptation using asymmetric kernel transforms

Brian Kulis; Kate Saenko; Trevor Darrell

In real-world applications, “what you saw” during training is often not “what you get” during deployment: the distribution and even the type and dimensionality of features can change from one dataset to the next. In this paper, we address the problem of visual domain adaptation for transferring object models from one dataset or visual domain to another. We introduce ARC-t, a flexible model for supervised learning of non-linear transformations between domains. Our method is based on a novel theoretical result demonstrating that such transformations can be learned in kernel space. Unlike existing work, our model is not restricted to symmetric transformations, nor to features of the same type and dimensionality, making it applicable to a significantly wider set of adaptation scenarios than previous methods. Furthermore, the method can be applied to categories that were not available during training. We demonstrate the ability of our method to adapt object recognition models under a variety of situations, such as differing imaging conditions, feature types and codebooks.


Foundations and Trends® in Machine Learning | 2013

Metric Learning: A Survey

Brian Kulis

The metric learning problem is concerned with learning a distance function tuned to a particular task, and has been shown to be useful when used in conjunction with nearest-neighbor methods and other techniques that rely on distances or similarities. Metric Learning: A Review presents an overview of existing research in this topic, including recent progress on scaling to high-dimensional feature spaces and to data sets with an extremely large number of data points. It presents as unified a framework as possible under which existing research on metric learning can be cast. The monograph starts out by focusing on linear metric learning approaches, and mainly concentrates on the class of Mahalanobis distance learning methods. It then discusses nonlinear metric learning approaches, focusing on the connections between the non-linear and linear approaches. Finally, it discusses extensions of metric learning, as well as applications to a variety of problems in computer vision, text analysis, program analysis, and multimedia. Metric Learning: A Review is an ideal reference for anyone interested in the metric learning problem. It synthesizes much of the recent work in the area and it is hoped that it will inspire new algorithms and applications.


computer vision and pattern recognition | 2008

Fast image search for learned metrics

Prateek Jain; Brian Kulis; Kristen Grauman

We introduce a method that enables scalable image search for learned metrics. Given pairwise similarity and dissimilarity constraints between some images, we learn a Mahalanobis distance function that captures the imagespsila underlying relationships well. To allow sub-linear time similarity search under the learned metric, we show how to encode the learned metric parameterization into randomized locality-sensitive hash functions. We further formulate an indirect solution that enables metric learning and hashing for vector spaces whose high dimensionality make it infeasible to learn an explicit weighting over the feature dimensions. We demonstrate the approach applied to a variety of image datasets. Our learned metrics improve accuracy relative to commonly-used metric baselines, while our hashing construction enables efficient indexing with learned distances and very large databases.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

Kernelized Locality-Sensitive Hashing

Brian Kulis; Kristen Grauman

Fast retrieval methods are critical for many large-scale and data-driven vision applications. Recent work has explored ways to embed high-dimensional features or complex distance functions into a low-dimensional Hamming space where items can be efficiently searched. However, existing methods do not apply for high-dimensional kernelized data when the underlying feature embedding for the kernel is unknown. We show how to generalize locality-sensitive hashing to accommodate arbitrary kernel functions, making it possible to preserve the algorithms sublinear time similarity search guarantees for a wide class of useful similarity functions. Since a number of successful image-based kernels have unknown or incomputable embeddings, this is especially valuable for image retrieval tasks. We validate our technique on several data sets, and show that it enables accurate and fast performance for several vision problems, including example-based object classification, local feature matching, and content-based retrieval.


knowledge discovery and data mining | 2003

Natural communities in large linked networks

John E. Hopcroft; Omar Khan; Brian Kulis; Bart Selman

We are interested in finding natural communities in large-scale linked networks. Our ultimate goal is to track changes over time in such communities. For such temporal tracking, we require a clustering algorithm that is relatively stable under small perturbations of the input data. We have developed an efficient, scalable agglomerative strategy and applied it to the citation graph of the NEC CiteSeer database (250,000 papers; 4.5 million citations). Agglomerative clustering techniques are known to be unstable on data in which the community structure is not strong. We find that some communities are essentially random and thus unstable while others are natural and will appear in most clusterings. These natural communities will enable us to track the evolution of communities over time.

Collaboration


Dive into the Brian Kulis's collaboration.

Top Co-Authors

Avatar

Inderjit S. Dhillon

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trevor Darrell

University of California

View shared research outputs
Top Co-Authors

Avatar

Kristen Grauman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Ke Jiang

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Suvrit Sra

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuqiang Guan

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge