Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian L. Block is active.

Publication


Featured researches published by Brian L. Block.


Journal of Virology | 2008

Marked Epitope- and Allele-Specific Differences in Rates of Mutation in Human Immunodeficiency Type 1 (HIV-1) Gag, Pol, and Nef Cytotoxic T-Lymphocyte Epitopes in Acute/Early HIV-1 Infection

Zabrina L. Brumme; Chanson J. Brumme; Jonathan M. Carlson; Hendrik Streeck; M. John; Quentin Eichbaum; Brian L. Block; Brett Baker; Carl M. Kadie; Martin Markowitz; Heiko Jessen; Anthony D. Kelleher; Eric S. Rosenberg; John M. Kaldor; Yuko Yuki; Mary Carrington; Todd M. Allen; S. Mallal; Marcus Altfeld; David Heckerman; Bruce D. Walker

ABSTRACT During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in ∼80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.


The Journal of Infectious Diseases | 2009

Persistent Low-Level Viremia in HIV-1 Elite Controllers and Relationship to Immunologic Parameters

Florencia Pereyra; Sarah Palmer; Toshiyuki Miura; Brian L. Block; Ann Wiegand; Alissa C. Rothchild; Brett Baker; Rachel Rosenberg; Emily Cutrell; Michael S. Seaman; John M. Coffin; Bruce D. Walker

BACKGROUND Human immunodeficiency virus type 1 (HIV-1) elite controllers are able to control virus replication to levels below the limits of detection by commercial assays, but the actual level of viremia in these individuals is not well defined. Here, we quantify plasma HIV-1 RNA in elite controllers and correlate this with specific immunologic parameters. METHODS Plasma HIV-1 RNA levels were quantified in 90 elite controllers with use of a real time reverse-transcriptase polymerase chain reaction assay with a sensitivity of 0.2 copies/mL. HIV-1-specific immune responses and longitudinal CD4(+) T cell counts were examined. RESULTS The median plasma HIV-1 RNA level was 2 copies/mL (interquartile range, 0.2-14 copies/mL). A longitudinal analysis of 31 elite controllers demonstrated 2-5-fold fluctuations in viremia in the majority of individuals; 6 had persistent levels below 1 copy/mL. Viremia correlated directly with HIV-1-specific neutralizing antibodies and Western blot reactivity but not with CD8(+) T cell responses. Absolute CD4(+) T cell decrease was more common among individuals with detectable viremia (P = .04). CONCLUSIONS Low-level viremia is present in the majority of elite controllers and is associated with higher HIV-1-specific antibody responses. Absolute CD4(+) T cell loss is more common among viremic individuals, suggesting that even very low-level viremia has negative consequences over time.


Journal of Virology | 2008

Genetic Characterization of Human Immunodeficiency Virus Type 1 in Elite Controllers: Lack of Gross Genetic Defects or Common Amino Acid Changes

Toshiyuki Miura; Mark A. Brockman; Chanson J. Brumme; Zabrina L. Brumme; Jonathan M. Carlson; Florencia Pereyra; Alicja Trocha; Marylyn M. Addo; Brian L. Block; Alissa C. Rothchild; Brett Baker; Theresa Flynn; Arne Schneidewind; Bin Li; Yaoyu E. Wang; David Heckerman; Todd M. Allen; Bruce D. Walker

ABSTRACT Despite reports of viral genetic defects in persons who control human immunodeficiency virus type 1 (HIV-1) in the absence of antiviral therapy, the extent to which such defects contribute to the long-term containment of viremia is not known. Most previous studies examining for such defects have involved small numbers of subjects, primarily focused on subjects expressing HLA-B57, or have examined single viral genes, and they have focused on cellular proviral DNA rather than plasma viral RNA sequences. Here, we attempted viral sequencing from 95 HIV-1 elite controllers (EC) who maintained plasma viral loads of <50 RNA copies/ml in the absence of therapy, the majority of whom did not express HLA-B57. HIV-1 gene fragments were obtained from 94% (89/95) of the EC, and plasma viral sequences were obtained from 78% (61/78), the latter indicating the presence of replicating virus in the majority of EC. Of 63 persons for whom nef was sequenced, only three cases of nef deletions were identified, and gross genetic defects were rarely observed in other HIV-1 coding genes. In a codon-by-codon comparison between EC and persons with progressive infection, correcting for HLA bias and coevolving secondary mutations, a significant difference was observed at only three codons in Gag, all three of which represented the historic population consensus amino acid at the time of infection. These results indicate that the spontaneous control of HIV replication is not attributable to shared viral genetic defects or shared viral polymorphisms.


Journal of Virology | 2009

HLA-Associated Alterations in Replication Capacity of Chimeric NL4-3 Viruses Carrying gag-protease from Elite Controllers of Human Immunodeficiency Virus Type 1

Toshiyuki Miura; Mark A. Brockman; Zabrina L. Brumme; Chanson J. Brumme; Florencia Pereyra; Alicja Trocha; Brian L. Block; Arne Schneidewind; Todd M. Allen; David Heckerman; Bruce D. Walker

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected persons who maintain plasma viral loads of <50 copies RNA/ml without treatment have been termed elite controllers (EC). Factors contributing to durable control of HIV in EC are unknown, but an HLA-dependent mechanism is suggested by overrepresentation of “protective” class I alleles, such as B*27, B*51, and B*57. Here we investigated the relative replication capacity of viruses (VRC) obtained from EC (n = 54) compared to those from chronic progressors (CP; n = 41) by constructing chimeric viruses using patient-derived gag-protease sequences amplified from plasma HIV RNA and inserted into an NL4-3 backbone. The chimeric viruses generated from EC displayed lower VRC than did viruses from CP (P < 0.0001). HLA-B*57 was associated with lower VRC (P = 0.0002) than were other alleles in both EC and CP groups. Chimeric viruses from B*57+ EC (n = 18) demonstrated lower VRC than did viruses from B*57+ CP (n = 8, P = 0.0245). Differences in VRC between EC and CP were also observed for viruses obtained from individuals expressing no described “protective” alleles (P = 0.0065). Intriguingly, two common HLA alleles, A*02 and B*07, were associated with higher VRC (P = 0.0140 and 0.0097, respectively), and there was no difference in VRC between EC and CP sharing these common HLA alleles. These findings indicate that cytotoxic T-lymphocyte (CTL) selection pressure on gag-protease alters VRC, and HIV-specific CTLs inducing escape mutations with fitness costs in this region may be important for strict viremia control in EC of HIV.


Journal of Virology | 2010

Impaired Replication Capacity of Acute/Early Viruses in Persons Who Become HIV Controllers

Toshiyuki Miura; Zabrina L. Brumme; Mark A. Brockman; Pamela C. Rosato; Jennifer Sela; Chanson J. Brumme; Florencia Pereyra; Daniel E. Kaufmann; Alicja Trocha; Brian L. Block; Eric S. Daar; Elizabeth Connick; Heiko Jessen; Anthony D. Kelleher; Eric S. Rosenberg; Martin Markowitz; Kim Schafer; Florin Vaida; Aikichi Iwamoto; Susan J. Little; Bruce D. Walker

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) controllers maintain viremia at <2,000 RNA copies/ml without antiretroviral therapy. Viruses from controllers with chronic infection were shown to exhibit impaired replication capacities, in part associated with escape mutations from cytotoxic-T-lymphocyte (CTL) responses. In contrast, little is known about viruses during acute/early infection in individuals who subsequently become HIV controllers. Here, we examine the viral replication capacities, HLA types, and virus sequences from 18 HIV-1 controllers identified during primary infection. gag-protease chimeric viruses constructed using the earliest postinfection samples displayed significantly lower replication capacities than isolates from persons who failed to control viremia (P = 0.0003). Protective HLA class I alleles were not enriched in these early HIV controllers, but viral sequencing revealed a significantly higher prevalence of drug resistance mutations associated with impaired viral fitness in controllers than in noncontrollers (6/15 [40.0%] versus 10/80 [12.5%], P = 0.018). Moreover, of two HLA-B57-positive (B57+) controllers identified, both harbored, at the earliest time point tested, signature escape mutations within Gag that likewise impair viral replication capacity. Only five controllers did not express “protective” alleles or harbor viruses with drug resistance mutations; intriguingly, two of them displayed typical B57 signature mutations (T242N), suggesting the acquisition of attenuated viruses from B57+ donors. These data indicate that acute/early stage viruses from persons who become controllers have evidence of reduced replication capacity during the initial stages of infection which is likely associated with transmitted or acquired CTL escape mutations or transmitted drug resistance mutations. These data suggest that viral dynamics during acute infection have a major impact on HIV disease outcome.


Journal of Virology | 2009

Differential Neutralization of Human Immunodeficiency Virus (HIV) Replication in Autologous CD4 T Cells by HIV-Specific Cytotoxic T Lymphocytes

Huabiao Chen; Alicja Piechocka-Trocha; Toshiyuki Miura; Mark A. Brockman; Boris Julg; Brett Baker; Alissa C. Rothchild; Brian L. Block; Arne Schneidewind; Tomohiko Koibuchi; Florencia Pereyra; Todd M. Allen; Bruce D. Walker

ABSTRACT Defining the antiviral efficacy of CD8 T cells is important for immunogen design, and yet most current assays do not measure the ability of responses to neutralize infectious virus. Here we show that human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte (CTL) clones and cell lines derived from infected persons and targeting diverse epitopes differ by over 1,000-fold in their ability to retard infectious virus replication in autologous CD4 T cells during a 7-day period in vitro, despite comparable activity as assessed by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay. Cell lines derived from peripheral blood mononuclear cells stimulated in vitro with peptides representing targeted Gag epitopes consistently neutralized HIV better than Env-specific lines from the same person, although ineffective inhibition of virus replication is not a universal characteristic of Env-specific responses at the clonal level. Gag-specific cell lines were of higher avidity than Env-specific lines, although avidity did not correlate with the ability of Gag- or Env-specific lines to contain HIV replication. The greatest inhibition was observed with cell lines restricted by the protective HLA alleles B*27 and B*57, but stimulation with targeted Gag epitopes resulted in greater inhibition than did stimulation with targeted Env epitopes even in non-B*27/B*57 subjects. These results assessing functional virus neutralization by HIV-specific CD8 T cells indicate that there are marked epitope- and allele-specific differences in virus neutralization by in vitro-expanded CD8 T cells, a finding not revealed by standard IFN-γ ELISPOT assay currently in use in vaccine trials, which may be of critical importance in immunogen design and testing of candidate AIDS vaccines.


Journal of Virology | 2009

HLA-associated viral mutations are common in human immunodeficiency virus type 1 elite controllers.

Toshiyuki Miura; Chanson J. Brumme; Mark A. Brockman; Zabrina L. Brumme; Florencia Pereyra; Brian L. Block; Alicja Trocha; M. John; S. Mallal; Harrigan Pr; Bruce D. Walker

ABSTRACT Elite controllers (EC) of human immunodeficiency virus type 1 (HIV-1) maintain viremia below the limit of detection without antiretroviral treatment. Virus-specific cytotoxic CD8+ T lymphocytes are believed to play a crucial role in viral containment, but the degree of immune imprinting and compensatory mutations in EC is unclear. We obtained plasma gag, pol, and nef sequences from HLA-diverse subjects and found that 30 to 40% of the predefined HLA-associated polymorphic sites show evidence of immune selection pressure in EC, compared to approximately 50% of the sites in chronic progressors. These data indicate ongoing viral replication and escape from cytotoxic T lymphocytes are present even in strictly controlled HIV-1 infection.


Journal of Acquired Immune Deficiency Syndromes | 2011

Reduced replication capacity of NL4-3 recombinant viruses encoding reverse transcriptase-integrase sequences from HIV-1 elite controllers.

Zabrina L. Brumme; Chun Li; Toshiyuki Miura; Jennifer Sela; Pamela C. Rosato; Chanson J. Brumme; Tristan Markle; Eric Martin; Brian L. Block; Alicja Trocha; Carl M. Kadie; Todd M. Allen; Florencia Pereyra; David Heckerman; Bruce D. Walker; Mark A. Brockman

Background:Identifying viral and host determinants of HIV-1 elite control may help inform novel therapeutic and/or vaccination strategies. Previously, we observed decreased replication capacity in controller-derived viruses suggesting that fitness consequences of human leukocyte antigen (HLA) class I-associated escape mutations in Gag may contribute to this phenotype. This study examines whether similar functional defects occur in Pol proteins of elite controllers. Methods:Recombinant NL4-3 viruses encoding plasma RNA-derived reverse transcriptase-integrase sequences from 58 elite controllers and 50 untreated chronic progressors were constructed, and replication capacity measured in vitro using a green fluorescent protein (GFP) reporter T-cell assay. Sequences were analyzed for drug resistance and HLA-associated viral polymorphisms. Results:Controller-derived viruses displayed significantly lower replication capacity compared with those from progressors (P < 0.0001). Among controllers, the most attenuated viruses were generated from individuals expressing HLA-B*57 or B*51. In viruses from B*57+ progressors (n = 8), a significant inverse correlation was observed between B*57-associated reverse transcriptase-integrase escape mutations and replication capacity (R = −0.89; P = 0.003); a similar trend was observed in B*57+ controller-derived viruses (n = 20, R = −0.36; P = 0.08). Conclusions:HIV-1 Pol function seemed to be compromised in elite controllers. As observed previously for Gag, HLA-associated immune pressure in Pol may contribute to viral attenuation and subsequent control of viremia.


Theoretical Biology and Medical Modelling | 2011

Using an agent-based model to analyze the dynamic communication network of the immune response

Virginia A Folcik; Gordon Broderick; Shunmugam Mohan; Brian L. Block; Chirantan Ekbote; John Doolittle; Marc Khoury; Luke Davis; Clay B. Marsh

BackgroundThe immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions.ResultsAnalyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win) versus persistent infection (loss), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the loss outcomes.ConclusionsAn agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies.


International Journal of Emergency Medicine | 2009

Rapid HIV testing program implementation: lessons from the emergency department

Christian Arbelaez; Brian L. Block; Elena Losina; Elizabeth A. Wright; William M. Reichmann; Regina Mikulinsky; Jessica D. Solomon; Matthew Dooley; Rochelle P. Walensky

BackgroundThe US Centers for Disease Control and Prevention (CDC) guidelines and the World Health Organization (WHO) both recommend HIV testing in health-care settings. However, neither organization provides prescriptive details regarding how these recommendations should be adapted into clinical practice in an emergency department.MethodsWe have implemented an HIV-testing program in the ED of a major academic medical center within the scope of the Universal Screening for HIV Infection in the Emergency Room (USHER) Trial—a randomized clinical trial evaluating the feasibility and cost-effectiveness of HIV screening in this setting.Results and conclusionDrawing on our collective experiences in establishing programs domestically and internationally, we offer a practical framework of lessons learned so that others poised to embark on such HIV testing programs may benefit from our experiences.

Collaboration


Dive into the Brian L. Block's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chanson J. Brumme

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alissa C. Rothchild

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge