Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian L. Fisher is active.

Publication


Featured researches published by Brian L. Fisher.


Science | 2008

Aligning Conservation Priorities Across Taxa in Madagascar with High-Resolution Planning Tools

Claire Kremen; Alison Cameron; Atte Moilanen; S.J. Phillips; Chris D. Thomas; H. Beentje; J. Dransfield; Brian L. Fisher; Frank Glaw; T. C. Good; Grady J. Harper; Robert J. Hijmans; David C. Lees; Edward E. Louis; Ronald A. Nussbaum; Christopher J. Raxworthy; A. Razafimpahanana; George E. Schatz; Miguel Vences; David R. Vieites; Michelle L. Zjhra

Globally, priority areas for biodiversity are relatively well known, yet few detailed plans exist to direct conservation action within them, despite urgent need. Madagascar, like other globally recognized biodiversity hot spots, has complex spatial patterns of endemism that differ among taxonomic groups, creating challenges for the selection of within-country priorities. We show, in an analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-taxon approaches are critical for identifying areas likely to promote the persistence of most species. Our conservation prioritization, facilitated by newly available techniques, identifies optimal expansion sites for the Madagascar governments current goal of tripling the land area under protection. Our findings further suggest that high-resolution multitaxonomic approaches to prioritization may be necessary to ensure protection for biodiversity in other global hot spots.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Evaluating alternative hypotheses for the early evolution and diversification of ants

Seán G. Brady; Ted R. Schultz; Brian L. Fisher; Philip S. Ward

Ants are the worlds most diverse and ecologically dominant eusocial organisms. Resolving the phylogeny and timescale for major ant lineages is vital to understanding how they achieved this success. Morphological, molecular, and paleontological studies, however, have presented conflicting views on early ant evolution. To address these issues, we generated the largest ant molecular phylogenetic data set published to date, containing ≈6 kb of DNA sequence from 162 species representing all 20 ant subfamilies and 10 aculeate outgroup families. When these data were analyzed with and without outgroups, which are all distantly related to ants and hence long-branched, we obtained conflicting ingroup topologies for some early ant lineages. This result casts strong doubt on the existence of a poneroid clade as currently defined. We compare alternate attachments of the outgroups to the ingroup tree by using likelihood tests, and find that several alternative rootings cannot be rejected by the data. These alternatives imply fundamentally different scenarios for the early evolution of ant morphology and behavior. Our data strongly support several notable relationships within the more derived formicoid ants, including placement of the enigmatic subfamily Aenictogitoninae as sister to Dorylus army ants. We use the molecular data to estimate divergence times, employing a strategy distinct from previous work by incorporating the extensive fossil record of other aculeate Hymenoptera as well as that of ants. Our age estimates for the most recent common ancestor of extant ants range from ≈115 to 135 million years ago, indicating that a Jurassic origin is highly unlikely.


Philosophical Transactions of the Royal Society B | 2005

DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar

M. Alex Smith; Brian L. Fisher; Paul D. N. Hebert

The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon—indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies.


Ecological Applications | 1999

IMPROVING INVENTORY EFFICIENCY: A CASE STUDY OF LEAF-LITTER ANT DIVERSITY IN MADAGASCAR

Brian L. Fisher

For most invertebrates, ecologists lack efficient inventory methods for assessing geographic patterns of species richness, complementarity (distinctness), and areas of endemism. I evaluated the efficiency of quantitative inventory methods developed for leaf-litter ants in tropical rain forests in eastern Madagascar. The aim was to maximize the number of species captured per sampling effort in a systematic design subject to standard statistical analysis. I used species and complementarity accumulation curves to evaluate the efficiency of the inventory design based on all ant species sampled and based on four species-rich genera that could potentially act as surrogates for estimating total ant diversity. I evaluated: (1) efficiencies of pitfall and Winkler sifting methods to capture leaf-litter ant assemblages, (2) effects of sample size and spacing on completeness and ranking of species richness, (3) completeness of complementarity values, and (4) four species-rich ant genera that could potentially act as ...


Ecology Letters | 2009

Climatic drivers of hemispheric asymmetry in global patterns of ant species richness.

Robert R. Dunn; Donat Agosti; Alan N. Andersen; Xavier Arnan; Carsten A. Brühl; Xim Cerdá; Aaron M. Ellison; Brian L. Fisher; Matthew C. Fitzpatrick; Heloise Gibb; Nicholas J. Gotelli; Aaron D. Gove; Benoît S. Guénard; Milan Janda; Michael Kaspari; Edward J. Laurent; Jean-Philippe Lessard; John T. Longino; Jonathan Majer; Sean B. Menke; Terrence P. McGlynn; Catherine L. Parr; Stacy M. Philpott; Martin Pfeiffer; Javier Retana; Andrew V. Suarez; Heraldo Heraldo Vasconcelos; Michael D. Weiser; Nathan J. Sanders

Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.


Systematic Entomology | 2015

The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae)

Philip S. Ward; Seán G. Brady; Brian L. Fisher; Ted R. Schultz

This study investigates the evolutionary history of a hyperdiverse clade, the ant subfamily Myrmicinae (Hymenoptera: Formicidae), based on analyses of a data matrix comprising 251 species and 11 nuclear gene fragments. Under both maximum likelihood and Bayesian methods of inference, we recover a robust phylogeny that reveals six major clades of Myrmicinae, here treated as newly defined tribes and occurring as a pectinate series: Myrmicini, Pogonomyrmecini trib.n., Stenammini, Solenopsidini, Attini and Crematogastrini. Because we condense the former 25 myrmicine tribes into a new six‐tribe scheme, membership in some tribes is now notably different, especially regarding Attini. We demonstrate that the monotypic genus Ankylomyrma is neither in the Myrmicinae nor even a member of the more inclusive formicoid clade—rather it is a poneroid ant, sister to the genus Tatuidris (Agroecomyrmecinae). Several species‐rich myrmicine genera are shown to be nonmonophyletic, including Pogonomyrmex, Aphaenogaster, Messor, Monomorium, Pheidole, Temnothorax and Tetramorium. We propose a number of generic synonymies to partially alleviate these problems (senior synonym listed first): Pheidole = Anisopheidole syn.n. = Machomyrma syn.n.; Temnothorax = Chalepoxenus syn.n. = Myrmoxenus syn.n. = Protomognathus syn.n.; Tetramorium = Rhoptromyrmex syn.n. = Anergates syn.n. = Teleutomyrmex syn.n. The genus Veromessor stat.r. is resurrected for the New World species previously placed in Messor; Syllophopsis stat.r. is resurrected from synonymy under Monomorium to contain the species in the hildebrandti group; Trichomyrmex stat.r. is resurrected from synonymy under Monomorium to contain the species in the scabriceps‐ and destructor‐groups; and the monotypic genus Epelysidris stat.r. is reinstated for Monomorium brocha. Bayesian divergence dating indicates that the crown group Myrmicinae originated about 98.6 Ma (95% highest probability density 87.9–109.6 Ma) but the six major clades are considerably younger, with age estimates ranging from 52.3 to 71.1 Ma. Although these and other suprageneric taxa arose mostly in the middle Eocene or earlier, a number of prominent, species‐rich genera, such as Pheidole, Cephalotes, Strumigenys, Crematogaster and Tetramorium, have estimated crown group origins in the late Eocene or Oligocene. Most myrmicine species diversity resides in the two sister clades, Attini and Crematogastrini, which are estimated to have originated and diversified extensively in the Neotropics and Paleotropics, respectively. The newly circumscribed Myrmicini is Holarctic in distribution, and ancestral range estimation suggests a Nearctic origin. The Pogonomyrmecini and Solenopsidini are reconstructed as being Neotropical in origin, but they have subsequently colonized the Nearctic region (Pogonomyrmecini) and many parts of the Old World as well as the Nearctic region (Solenopsidini), respectively. The Stenammini have flourished primarily in the northern hemisphere, and are most likely of Nearctic origin, but selected lineages have dispersed to the northern Neotropics and the Paleotropics. Thus the evolutionary history of the Myrmicinae has played out on a global stage over the last 100 Ma, with no single region being the principal generator of species diversity.


BioScience | 2004

Mapping More of Terrestrial Biodiversity for Global Conservation Assessment

Simon Ferrier; George V. N. Powell; Karen S. Richardson; Glenn Manion; Jake J.M. Overton; Thomas F. Allnutt; Susan S.E. Cameron; Kellie Mantle; Neil D. Burgess; Daniel D.R. Faith; John F. Lamoreux; Gerold Kier; Robert J. Hijmans; Vicki A. Funk; Gerasimos Cassis; Brian L. Fisher; Paul Flemons; David C. Lees; Jon C. Lovett; Renaat Van Rompaey

Abstract Global conservation assessments require information on the distribution of biodiversity across the planet. Yet this information is often mapped at a very coarse spatial resolution relative to the scale of most land-use and management decisions. Furthermore, such mapping tends to focus selectively on better-known elements of biodiversity (e.g., vertebrates). We introduce a new approach to describing and mapping the global distribution of terrestrial biodiversity that may help to alleviate these problems. This approach focuses on estimating spatial pattern in emergent properties of biodiversity (richness and compositional turnover) rather than distributions of individual species, making it well suited to lesser-known, yet highly diverse, biological groups. We have developed a global biodiversity model linking these properties to mapped ecoregions and fine-scale environmental surfaces. The model is being calibrated progressively using extensive biological data sets for a wide variety of taxa. We also describe an analytical approach to applying our model in global conservation assessments, illustrated with a preliminary analysis of the representativeness of the worlds protected-area system. Our approach is intended to complement, not compete with, assessments based on individual species of particular conservation concern.


Archive | 2015

The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade

Philip S. Ward; Seán G. Brady; Brian L. Fisher; Ted R. Schultz

This study investigates the evolutionary history of a hyperdiverse clade, the ant subfamily Myrmicinae (Hymenoptera: Formicidae), based on analyses of a data matrix comprising 251 species and 11 nuclear gene fragments. Under both maximum likelihood and Bayesian methods of inference, we recover a robust phylogeny that reveals six major clades of Myrmicinae, here treated as newly defined tribes and occurring as a pectinate series: Myrmicini, Pogonomyrmecini trib.n., Stenammini, Solenopsidini, Attini and Crematogastrini. Because we condense the former 25 myrmicine tribes into a new six‐tribe scheme, membership in some tribes is now notably different, especially regarding Attini. We demonstrate that the monotypic genus Ankylomyrma is neither in the Myrmicinae nor even a member of the more inclusive formicoid clade—rather it is a poneroid ant, sister to the genus Tatuidris (Agroecomyrmecinae). Several species‐rich myrmicine genera are shown to be nonmonophyletic, including Pogonomyrmex, Aphaenogaster, Messor, Monomorium, Pheidole, Temnothorax and Tetramorium. We propose a number of generic synonymies to partially alleviate these problems (senior synonym listed first): Pheidole = Anisopheidole syn.n. = Machomyrma syn.n.; Temnothorax = Chalepoxenus syn.n. = Myrmoxenus syn.n. = Protomognathus syn.n.; Tetramorium = Rhoptromyrmex syn.n. = Anergates syn.n. = Teleutomyrmex syn.n. The genus Veromessor stat.r. is resurrected for the New World species previously placed in Messor; Syllophopsis stat.r. is resurrected from synonymy under Monomorium to contain the species in the hildebrandti group; Trichomyrmex stat.r. is resurrected from synonymy under Monomorium to contain the species in the scabriceps‐ and destructor‐groups; and the monotypic genus Epelysidris stat.r. is reinstated for Monomorium brocha. Bayesian divergence dating indicates that the crown group Myrmicinae originated about 98.6 Ma (95% highest probability density 87.9–109.6 Ma) but the six major clades are considerably younger, with age estimates ranging from 52.3 to 71.1 Ma. Although these and other suprageneric taxa arose mostly in the middle Eocene or earlier, a number of prominent, species‐rich genera, such as Pheidole, Cephalotes, Strumigenys, Crematogaster and Tetramorium, have estimated crown group origins in the late Eocene or Oligocene. Most myrmicine species diversity resides in the two sister clades, Attini and Crematogastrini, which are estimated to have originated and diversified extensively in the Neotropics and Paleotropics, respectively. The newly circumscribed Myrmicini is Holarctic in distribution, and ancestral range estimation suggests a Nearctic origin. The Pogonomyrmecini and Solenopsidini are reconstructed as being Neotropical in origin, but they have subsequently colonized the Nearctic region (Pogonomyrmecini) and many parts of the Old World as well as the Nearctic region (Solenopsidini), respectively. The Stenammini have flourished primarily in the northern hemisphere, and are most likely of Nearctic origin, but selected lineages have dispersed to the northern Neotropics and the Paleotropics. Thus the evolutionary history of the Myrmicinae has played out on a global stage over the last 100 Ma, with no single region being the principal generator of species diversity.


PLOS ONE | 2008

A Revision of Malagasy Species of Anochetus Mayr and Odontomachus Latreille (Hymenoptera: Formicidae)

Brian L. Fisher; M. Alex Smith

Species inventories are essential for documenting global diversity and generating necessary material for taxonomic study and conservation planning. However, for inventories to be immediately relevant, the taxonomic process must reduce the time to describe and identify specimens. To address these concerns for the inventory of arthropods across the Malagasy region, we present here a collaborative approach to taxonomy where collectors, morphologists and DNA barcoders using cytochrome c oxidase 1 (CO1) participate collectively in a team-driven taxonomic process. We evaluate the role of DNA barcoding as a tool to accelerate species identification and description. This revision is primarily based on arthropod surveys throughout the Malagasy region from 1992 to 2006. The revision is based on morphological and CO1 DNA barcode analysis of 500 individuals. In the region, five species of Anochetus (A. boltoni sp. nov., A. goodmani sp. nov., A. grandidieri, and A. madagascarensis from Madagascar, and A. pattersoni sp. nov. from Seychelles) and three species of Odontomachus (O. coquereli, O. troglodytes and O. simillimus) are recognized. DNA barcoding (using cytochrome c oxidase 1 (CO1)) facilitated caste association and type designation, and highlighted population structure associated with reproductive strategy, biogeographic and evolutionary patterns for future exploration. This study provides an example of collaborative taxonomy, where morphology is combined with DNA barcoding. We demonstrate that CO1 DNA barcoding is a practical tool that allows formalized alpha-taxonomy at a speed, detail, precision, and scale unattainable by employing morphology alone.


PLOS ONE | 2012

Wolbachia and DNA barcoding insects: Patterns, potential, and problems

M. Alex Smith; Claudia Bertrand; Kate Crosby; Eldon S. Eveleigh; Jose Fernandez-Triana; Brian L. Fisher; Jason Gibbs; Mehrdad Hajibabaei; Winnie Hallwachs; Katharine R. Hind; Jan Hrcek; Da Wei Huang; Milan Janda; Daniel H. Janzen; Yanwei Li; Scott E. Miller; Laurence Packer; Donald L. J. Quicke; Sujeevan Ratnasingham; Josephine J. Rodriguez; Rodolphe Rougerie; Mark R Shaw; Cory S. Sheffield; Julie K. Stahlhut; Dirk Steinke; James B. Whitfield; Monty Wood; Xin Zhou

Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.

Collaboration


Dive into the Brian L. Fisher's collaboration.

Top Co-Authors

Avatar

Philip S. Ward

University of California

View shared research outputs
Top Co-Authors

Avatar

Seán G. Brady

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Ted R. Schultz

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Francisco Hita Garcia

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge