Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Leutholtz is active.

Publication


Featured researches published by Brian Leutholtz.


Journal of The International Society of Sports Nutrition | 2004

ISSN Exercise & Sport Nutrition Review: Research & Recommendations

Richard B. Kreider; Colin Wilborn; Lem Taylor; Bill Campbell; Anthony Almada; Rick Collins; Matthew B. Cooke; Conrad P. Earnest; Mike Greenwood; Douglas Kalman; Chad M. Kerksick; Susan M. Kleiner; Brian Leutholtz; Hector Lopez; Lonnie M. Lowery; Ron Mendel; Abbie Smith; Marie Spano; Robert Wildman; Darryn S. Willoughby; Tim Ziegenfuss; Jose Antonio

Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients.


Journal of The International Society of Sports Nutrition | 2008

Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals

Matthew B. Cooke; M Iosia; Thomas W. Buford; Brian Shelmadine; Geoffrey M. Hudson; Chad M. Kerksick; Christopher Rasmussen; Mike Greenwood; Brian Leutholtz; Darryn S. Willoughby; Richard B. Kreider

BackgroundTo determine whether acute (single dose) and/or chronic (14-days) supplementation of CoQ10 will improve anaerobic and/or aerobic exercise performance by increasing plasma and muscle CoQ10 concentrations within trained and untrained individuals.MethodsTwenty-two aerobically trained and nineteen untrained male and female subjects (26.1 ± 7.6 yrs, 172 ± 8.7 cm, 73.5 ± 17 kg, and 21.2 ± 7.0%) were randomized to ingest in a double-blind manner either 100 mg of a dextrose placebo (CON) or a fast-melt CoQ10 supplement (CoQ10) twice a day for 14-days. On the first day of supplementation, subjects donated fasting blood samples and a muscle biopsy. Subjects were then given 200 mg of the placebo or the CoQ10 supplement. Sixty minutes following supplement ingestion, subjects completed an isokinetic knee extension endurance test, a 30-second wingate anaerobic capacity test, and a maximal cardiopulmonary graded exercise test interspersed with 30-minutes of recovery. Additional blood samples were taken immediately following each exercise test and a second muscle biopsy sample was taken following the final exercise test. Subjects consumed twice daily (morning and night), 100 mg of either supplement for a period of 14-days, and then returned to the lab to complete the same battery of tests. Data was analyzed using repeated measures ANOVA with an alpha of 0.05.ResultsPlasma CoQ10 levels were significantly increased following 2 weeks of CoQ10 supplementation (p < 0.001); while a trend for higher muscle CoQ10 levels was observed after acute CoQ10 ingestion (p = 0.098). A trend for lower serum superoxide dismutase (SOD) was observed following acute supplementation with CoQ10 (p = 0.06), whereas serum malondialdehyde (MDA) tended to be significantly higher (p < 0.05). Following acute ingestion of CoQ10, plasma CoQ10 levels were significantly correlated to muscle CoQ10 levels; maximal oxygen consumption; and treadmill time to exhaustion. A trend for increased time to exhaustion was observed following 2 weeks of CoQ10 supplementation (p = 0.06).ConclusionAcute supplementation with CoQ10 resulted in higher muscle CoQ10 concentration, lower serum SOD oxidative stress, and higher MDA levels during and following exercise. Chronic CoQ10 supplementation increased plasma CoQ10 concentrations and tended to increase time to exhaustion. Results indicate that acute and chronic supplementation of CoQ10 may affect acute and/or chronic responses to various types of exercise.


Journal of The International Society of Sports Nutrition | 2009

Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun®, on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in males

Brian Shelmadine; Matthew B. Cooke; Thomas W. Buford; Geoffrey M. Hudson; Liz Redd; Brian Leutholtz; Darryn S. Willoughby

PurposeThis study determined the effects of 28 days of heavy resistance exercise combined with the nutritional supplement, NO-Shotgun®, on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers.MethodsEighteen non-resistance-trained males participated in a resistance training program (3 × 10-RM) 4 times/wk for 28 days while also ingesting 27 g/day of placebo (PL) or NO-Shotgun® (NO) 30 min prior to exercise. Data were analyzed with separate 2 × 2 ANOVA and t-tests (p < 0.05).ResultsTotal body mass was increased in both groups (p = 0.001), but without any significant increases in total body water (p = 0.77). No significant changes occurred with fat mass (p = 0.62); however fat-free mass did increase with training (p = 0.001), and NO was significantly greater than PL (p = 0.001). Bench press strength for NO was significantly greater than PL (p = 0.003). Myofibrillar protein increased with training (p = 0.001), with NO being significantly greater than PL (p = 0.019). Serum IGF-1 (p = 0.046) and HGF (p = 0.06) were significantly increased with training and for NO HGF was greater than PL (p = 0.002). Muscle phosphorylated c-met was increased with training for both groups (p = 0.019). Total DNA was increased in both groups (p = 0.006), while NO was significantly greater than PL (p = 0.038). For DNA/protein, PL was decreased and NO was not changed (p = 0.014). All of the myogenic regulatory factors were increased with training; however, NO was shown to be significantly greater than PL for Myo-D (p = 0.008) and MRF-4 (p = 0.022). No significant differences were located for any of the whole blood and serum clinical chemistry markers (p > 0.05).ConclusionWhen combined with heavy resistance training for 28 days, NO-Shotgun® is not associated with any negative side effects, nor does it abnormally impact any of the clinical chemistry markers. Rather, NO-Shotgun® effectively increases muscle strength and mass, myofibrillar protein content, and increases the content of markers indicative of satellite cell activation.


Nutrition Research | 2013

D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men.

Darryn S. Willoughby; Brian Leutholtz

It was hypothesized that D-aspartic acid (D-ASP) supplementation would not increase endogenous testosterone levels or improve muscular performance associated with resistance training. Therefore, body composition, muscle strength, and serum hormone levels associated with the hypothalamo-pituitary-gonadal axis were studied after 28 days of resistance training and D-ASP supplementation. Resistance-trained men resistance trained 4 times/wk for 28 days while orally ingesting either 3 g of placebo or 3 g of D-ASP. Data were analyzed with 2 × 2 analysis of variance (P < .05). Before and after resistance training and supplementation, body composition and muscle strength, serum gonadal hormones, and serum D-ASP and d-aspartate oxidase (DDO) were determined. Body composition and muscle strength were significantly increased in both groups in response to resistance training (P < .05) but not different from one another (P > .05). Total and free testosterone, luteinizing hormone, gonadotropin-releasing hormone, and estradiol were unchanged with resistance training and D-ASP supplementation (P > .05). For serum D-ASP and DDO, D-ASP resulted in a slight increase compared with baseline levels (P > .05). For the D-ASP group, the levels of serum DDO were significantly increased compared with placebo (P < .05). The gonadal hormones were unaffected by 28 days of D-ASP supplementation and not associated with the observed increases in muscle strength and mass. Therefore, at the dose provided, D-ASP supplementation is ineffective in up-regulating the activity of the hypothalamo-pituitary-gonadal axis and has no anabolic or ergogenic effects in skeletal muscle.


Nutrition Research | 2013

Capsaicin and evodiamine ingestion does not augment energy expenditure and fat oxidation at rest or after moderately-intense exercise

Neil Schwarz; Mike Spillane; Paul La Bounty; Peter W. Grandjean; Brian Leutholtz; Darryn S. Willoughby

Capsaicin and evodiamine are 2 thermogenic agents recognized for their ability to stimulate the sympathetic nervous system. We hypothesized that both capsaicin and evodiamine would be effective at increasing thermogenesis and lipid oxidation during rest and exercise. In a randomized, cross-over design, 11 men ingested 500 mg of cayenne pepper (1.25 mg capsaicin), 500 mg evodiamine, or placebo at rest following 30 minutes of energy expenditure assessment using open-circuit spirometry. Energy expenditure was assessed again prior to commencing approximately 30 minutes of treadmill exercise at 65% peak oxygen consumption. Energy expenditure was assessed for another 30 minutes of the post-exercise period. Heart rate, blood pressure, core temperature, and venous blood samples were obtained 30 minutes before supplement ingestion, 1 hour after supplement ingestion, immediately post-exercise, and 45 minutes post-exercise. Serum markers of lipid oxidation (glycerol, free fatty acids, glucose, epinephrine, and norepinephrine) were determined spectrophotometrically with enzyme-linked immunosorbent assay. Two-way analyses of variance with repeated measures were performed for each dependent variable (P ≤ .05) with Supplement and Test as main effects. Statistical analyses revealed significant main effects for Test for hemodynamics, energy expenditure, serum catecholamines, and markers of fat oxidation immediately post-exercise (P < .05). No significant interactions between Supplement and Test were noted for any criterion variable (P > .05). These results suggest that acute ingestion of 500 mg of cayenne (1.25 mg capsaicin) or evodiamine is not effective at inducing thermogenesis and increasing fat oxidation at rest or during exercise in men.


Journal of The International Society of Sports Nutrition | 2005

Nutrient Administration and Resistance Training

Chad M. Kerksick; Brian Leutholtz

Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. [1–3] After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.[1, 3] Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis.


Nutritional health: strategies for disease prevention | 2012

Optimizing Nutrition for Exercise and Sports

Richard B. Kreider; Neil Schwarz; Brian Leutholtz

The primary factors that affect exercise performance capacity include an individual’s genetic endowment, the quality of training, and effective coaching (see Fig. 19.1). Beyond these factors, nutrition plays a critical role in optimizing performance capacity. In order for athletes to perform well, their training and diet must be optimal. If athletes do not train enough or have an inadequate diet, their performance may be decreased [1]. On the other hand, if athletes train too much, without a sufficient diet, they may be susceptible to becoming overtrained (see Fig. 19.2).


Journal of Inflammation Research | 2018

Exercise-induced changes in stress hormones and cell adhesion molecules in obese men

Jinkyung Park; Darryn S. Willoughby; Joon Jin Song; Brian Leutholtz; Yunsuk Koh

Purpose The current study examined the relationship between exercise-induced changes in stress hormones (epinephrine, norepinephrine, and cortisol) and vascular inflammatory markers (soluble intracellular adhesion molecule-1 [sICAM-1], soluble endothelial selectin [sE-selectin], and soluble vascular adhesion molecule-1 [sVCAM-1]) in obese men over a 24-hour period following exercise at lower and higher intensity. Patients and methods Fifteen physically inactive, obese, college-aged men performed a single bout of cycling exercise at lower and higher intensities (lower intensity: 50% of maximal heart rate, and higher intensity: 80% of maximal heart rate) in random order. Overnight fasting blood samples were collected at baseline, immediately postexercise (IPE), 1-hour PE (1-h PE), and 24-hour PE. Changes in stress hormones and inflammatory markers were analyzed with a repeated-measures analysis of variance using Bonferroni multiple comparisons and a linear regression analysis (p<0.05). Results sICAM-1, sVCAM-1, epinephrine, and norepinephrine did not change over time, while sE-selectin was significantly lower at 1-h PE (10.25±1.07 ng/mL, p=0.04) than at baseline (12.22±1.39 ng/mL). Cortisol and sICAM-1 were negatively related at 1-h PE following lower-intensity exercise (r2=0.34, p=0.02), whereas cortisol and sVCAM-1 were positively related at IPE following higher-intensity exercise (r2=0.36, p=0.02). Conclusion Regardless of intensity, an acute bout of aerobic exercise may lower sE-selectin in sedentary obese men. Responses of cortisol are dependent on exercise intensity, and cortisol may be a key stress hormone playing a major role in regulating sICAM-1 and sVCAM-1.


Nutrition | 2006

Pharmacokinetics, safety, and effects on exercise performance of l-arginine α-ketoglutarate in trained adult men

Bill Campbell; Michael D. Roberts; Chad M. Kerksick; Colin Wilborn; B. Marcello; Lem Taylor; E Nassar; Brian Leutholtz; Rodney G. Bowden; C Rasmussen; Mike Greenwood; Richard B. Kreider


Journal of Renal Nutrition | 2007

Effects of Omega-3 Fatty Acid Supplementation on Vascular Access Thrombosis in Polytetrafluorethylene Grafts

Rodney G. Bowden; Ronald L. Wilson; Mindy Gentile; Songthip Ounpraseuth; Page C. Moore; Brian Leutholtz

Collaboration


Dive into the Brian Leutholtz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bill Campbell

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge