Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian M. Forde is active.

Publication


Featured researches published by Brian M. Forde.


PLOS ONE | 2014

The complete genome sequence of Escherichia coli EC958: a high quality reference sequence for the globally disseminated multidrug resistant E. coli O25b:H4-ST131 clone.

Brian M. Forde; Nouri L. Ben Zakour; Mitchell Stanton-Cook; Minh-Duy Phan; Makrina Totsika; Kate M. Peters; Kok-Gan Chan; Mark A. Schembri; Mathew Upton; Scott A. Beatson

Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.


Scientific Reports | 2015

Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae

Hosam M. Zowawi; Brian M. Forde; Mubarak Alfaresi; Abdulqadir Alzarouni; Yasser Farahat; Teik-Min Chong; Wai-Fong Yin; Kok-Gan Chan; Jian Li; Mark A. Schembri; Scott A. Beatson; David L. Paterson

Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics.


PLOS ONE | 2015

Molecular Characterization of a Multidrug Resistance IncF Plasmid from the Globally Disseminated Escherichia coli ST131 Clone

Minh-Duy Phan; Brian M. Forde; Kate M. Peters; Sohinee Sarkar; Steven J. Hancock; Mitchell Stanton-Cook; Nouri L. Ben Zakour; Mathew Upton; Scott A. Beatson; Mark A. Schembri

Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF plasmid from the E. coli ST131 reference strain EC958. Plasmid pEC958 is 135.6 kb in size, harbours two replicons (RepFIA and RepFII) and contains 12 antibiotic resistance genes (including the bla CTX-M-15 gene). We also carried out hyper-saturated transposon mutagenesis and multiplexed transposon directed insertion-site sequencing (TraDIS) to investigate the biology of pEC958. TraDIS data showed that while only the RepFII replicon was required for pEC958 replication, the RepFIA replicon contains genes essential for its partitioning. Thus, our data provides direct evidence that the RepFIA and RepFII replicons in pEC958 cooperate to ensure their stable inheritance. The gene encoding the antitoxin component (ccdA) of the post-segregational killing system CcdAB was also protected from mutagenesis, demonstrating this system is active. Sequence comparison with a global collection of ST131 strains suggest that IncF represents the most common type of plasmid in this clone, and underscores the need to understand its evolution and contribution to the spread of antibiotic resistance genes in E. coli ST131.


Scientific Reports | 2015

Transfer of scarlet fever-associated elements into the group A Streptococcus M1T1 clone

Nouri L. Ben Zakour; Mark R. Davies; Yuanhai You; Jonathan H. K. Chen; Brian M. Forde; Mitchell Stanton-Cook; Ruifu Yang; Yujun Cui; Timothy C. Barnett; Carola Venturini; Cheryl-lynn Y. Ong; Herman Tse; Gordon Dougan; Jianzhong Zhang; Kwok-Yung Yuen; Scott A. Beatson; Mark J. Walker

The group A Streptococcus (GAS) M1T1 clone emerged in the 1980s as a leading cause of epidemic invasive infections worldwide, including necrotizing fasciitis and toxic shock syndrome123. Horizontal transfer of mobile genetic elements has played a central role in the evolution of the M1T1 clone45, with bacteriophage-encoded determinants DNase Sda16 and superantigen SpeA27 contributing to enhanced virulence and colonization respectively. Outbreaks of scarlet fever in Hong Kong and China in 2011, caused primarily by emm12 GAS8910, led to our investigation of the next most common cause of scarlet fever, emm1 GAS89. Genomic analysis of 18 emm1 isolates from Hong Kong and 16 emm1 isolates from mainland China revealed the presence of mobile genetic elements associated with the expansion of emm12 scarlet fever clones1011 in the M1T1 genomic background. These mobile genetic elements confer expression of superantigens SSA and SpeC, and resistance to tetracycline, erythromycin and clindamycin. Horizontal transfer of mobile DNA conferring multi-drug resistance and expression of a new superantigen repertoire in the M1T1 clone should trigger heightened public health awareness for the global dissemination of these genetic elements.


Antimicrobial Agents and Chemotherapy | 2016

Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme

Steven J. Hancock; Minh-Duy Phan; Kate M. Peters; Brian M. Forde; Teik Min Chong; Wai-Fong Yin; Kok-Gan Chan; David L. Paterson; Timothy R. Walsh; Scott A. Beatson; Mark A. Schembri

ABSTRACT Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae. They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM. Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053. Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies.


Antimicrobial Agents and Chemotherapy | 2016

Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids

Alexander M. Wailan; Hanna E. Sidjabat; Wan Keat Yam; Nabil-Fareed Alikhan; Nicola K. Petty; Anna L. Sartor; Deborah A. Williamson; Brian M. Forde; Mark A. Schembri; Scott A. Beatson; David L. Paterson; Timothy R. Walsh; Sally R. Partridge

ABSTRACT blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family.


Mbio | 2015

Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone

Brian M. Forde; Minh-Duy Phan; Jayde A. Gawthorne; Melinda M. Ashcroft; Mitchell Stanton-Cook; Sohinee Sarkar; Kate M. Peters; Kok-Gan Chan; Teik Min Chong; Wai-Fong Yin; Mathew Upton; Mark A. Schembri; Scott A. Beatson

ABSTRACT Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three m6A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for m6A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. IMPORTANCE DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone. DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone.


Pathogenetics | 2015

Molecular Characterization of the Multidrug Resistant Escherichia coli ST131 Clone.

Mark A. Schembri; Nouri L. Ben Zakour; Minh-Duy Phan; Brian M. Forde; Mitchell Stanton-Cook; Scott A. Beatson

Escherichia coli ST131 is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections in both community and clinical settings. The most common group of ST131 strains are defined by resistance to fluoroquinolones and possession of the type 1 fimbriae fimH30 allele. Here we provide an update on our recent work describing the globally epidemiology of ST131. We review the phylogeny of ST131 based on whole genome sequence data and highlight the important role of recombination in the evolution of this clonal lineage. We also summarize our findings on the virulence of the ST131 reference strain EC958, and highlight the use of transposon directed insertion-site sequencing to define genes associated with serum resistance and essential features of its large antibiotic resistance plasmid pEC958.


Infection and Immunity | 2015

Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

Scott A. Beatson; Nouri L. Ben Zakour; Makrina Totsika; Brian M. Forde; Rebecca E. Watts; Amanda N. Mabbett; Jan M. Szubert; Sohinee Sarkar; Minh-Duy Phan; Kate M. Peters; Nicola K. Petty; Nabil-Fareed Alikhan; Mitchell Sullivan; Jayde A. Gawthorne; Mitchell Stanton-Cook; Nguyen Thi Khanh Nhu; Teik Min Chong; Wai-Fong Yin; Kok-Gan Chan; Viktoria Hancock; David W. Ussery; Glen C. Ulett; Mark A. Schembri

ABSTRACT Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.


Journal of Antimicrobial Chemotherapy | 2017

Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli

Minh-Duy Phan; Nguyen Thi Khanh Nhu; Maud E. S. Achard; Brian M. Forde; Kar Wai Hong; Teik Min Chong; Wai-Fong Yin; Kok-Gan Chan; Nicholas P. West; Mark J. Walker; David L. Paterson; Scott A. Beatson; Mark A. Schembri

Objectives Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958. Methods Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost. Results A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B. Conclusions This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

Collaboration


Dive into the Brian M. Forde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minh-Duy Phan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate M. Peters

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge