Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian M. Patten is active.

Publication


Featured researches published by Brian M. Patten.


Astrophysical Journal Supplement Series | 2004

The Infrared Array Camera (IRAC) for the Spitzer Space Telescope

Giovanni G. Fazio; Joseph L. Hora; Lori E. Allen; M. L. N. Ashby; Pauline Barmby; Lynne K. Deutsch; Jia-Sheng Huang; S. C. Kleiner; Massimo Marengo; S. T. Megeath; Gary J. Melnick; Michael Andrew Pahre; Brian M. Patten; J. Polizotti; H. A. Smith; R. S. Taylor; Zhong Wang; Steven P. Willner; William F. Hoffmann; Judith L. Pipher; William J. Forrest; C. W. McMurty; Craig R. McCreight; Mark E. McKelvey; Robert E. McMurray; David G. Koch; S. H. Moseley; Richard G. Arendt; John Eric Mentzell; Catherine T. Marx

The Infrared Array Camera (IRAC) is one of three focal plane instruments on the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broadband images at 3.6, 4.5, 5.8, and 8.0 � m. Two nearly adjacent 5A2 ; 5A2 fields of view in the focal plane are viewed by the four channels in pairs (3.6 and 5.8 � m; 4.5 and 8 � m). All four detector arrays in the camera are 256 ; 256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. IRAC is a powerful survey instrument because of its high sensitivity, large field of view, and four-color imaging. This paper summarizes the in-flight scientific, technical, and operational performance of IRAC.


The Astronomical Journal | 2006

Ubvri light curves of 44 type ia supernovae

Saurabh W. Jha; Robert P. Kirshner; Peter M. Challis; Peter Marcus Garnavich; Thomas Matheson; Alicia M. Soderberg; Genevieve J. Graves; Malcolm Stuart Hicken; J. Alves; Hector G. Arce; Zoltan Balog; Pauline Barmby; Elizabeth J. Barton; Perry L. Berlind; Ann E. Bragg; César A. Briceño; Warren R. Brown; James H. Buckley; Nelson Caldwell; Michael L. Calkins; Barbara J. Carter; Kristi Dendy Concannon; R. Hank Donnelly; Kristoffer A. Eriksen; Daniel G. Fabricant; Emilio E. Falco; F. Fiore; M. R. Garcia; Mercedes Gomez; Norman A. Grogin

We present UBVRI photometry of 44 Type Ia supernovae (SNe Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe Ia to date, nearly doubling the number of well-observed, nearby SNe Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SNe Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to the B band.


The Astrophysical Journal | 2006

Spitzer IRAC Photometry of M, L, and T Dwarfs

Brian M. Patten; John R. Stauffer; Adam Burrows; Massimo Marengo; Joseph L. Hora; K. L. Luhman; Sarah M. Sonnett; Todd J. Henry; Deepak Raghavan; S. Thomas Megeath; James Liebert; Giovanni G. Fazio

We present the results of a program to acquire photometry for 86 late M, L, and T dwarfs using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We examine the behavior of these cool dwarfs in various color-color and color-magnitude diagrams composed of near-IR and IRAC data. The T dwarfs exhibit the most distinctive positions in these diagrams. In M_(5.8) versus [5.8]-[8.0], the IRAC data for T dwarfs are not monotonic in either magnitude or color, giving the clearest indication yet that the T dwarfs are not a one-parameter family in T_(eff). Because metallicity does not vary enough in the solar neighborhood to act as the second parameter, the most likely candidate then is gravity, which in turn translates to mass. Among objects with similar spectral type, the range of mass suggested by our sample is about a factor of 5 (~70M_J to ~15M_J), with the less massive objects making up the younger members of the sample. We also find the IRAC 4.5 μm fluxes to be lower than expected, from which we infer a stronger CO fundamental band at ~4.67 μm. This suggests that equilibrium CH_4/CO chemistry underestimates the abundance of CO in T dwarf atmospheres, confirming earlier results based on M-band observations from the ground. In combining IRAC photometry with near-IR JHK photometry and parallax data, we find the combination of K_s, IRAC 3.6 μm, and 4.5 μm bands to provide the best color-color discrimination for a wide range of M, L, and T dwarfs. Also noteworthy is the M_k versus K_s-[4.5] relation, which shows a smooth progression over spectral type, and splits the M, L, and T types cleanly.


The Astrophysical Journal | 2000

The Submillimeter Wave Astronomy Satellite: Science Objectives and Instrument Description

Gary J. Melnick; John R. Stauffer; Matthew L. N. Ashby; Edwin A. Bergin; G. Chin; Neal R. Erickson; Paul F. Goldsmith; Martin Harwit; J. E. Howe; S. C. Kleiner; David G. Koch; David A. Neufeld; Brian M. Patten; R. Plume; R. Schieder; Ronald L. Snell; Volker Tolls; Zhong Wang; G. Winnewisser; Y. F. Zhang

The Submillimeter Wave Astronomy Satellite (SWAS), launched in 1998 December, is a NASA mission dedicated to the study of star formation through direct measurements of (1) molecular cloud composition and chemistry, (2) the cooling mechanisms that facilitate cloud collapse, and (3) the large-scale structure of the UV-illuminated cloud surfaces. To achieve these goals, SWAS is conducting pointed observations of dense [n(H2) > 103 cm-3] molecular clouds throughout our Galaxy in either the ground state or a low-lying transition of five astrophysically important species: H2O, H218O, O2, C I, and 13CO. By observing these lines SWAS is (1) testing long-standing theories that predict that these species are the dominant coolants of molecular clouds during the early stages of their collapse to form stars and planets and (2) supplying previously missing information about the abundance of key species central to the chemical models of dense interstellar gas. SWAS carries two independent Schottky barrier diode mixers—passively cooled to ~175 K—coupled to a 54 × 68 cm off-axis Cassegrain antenna with an aggregate surface error ~11 μm rms. During its baseline 3 yr mission, SWAS is observing giant and dark cloud cores with the goal of detecting or setting an upper limit on the water and molecular oxygen abundance of 3 × 10-6 (relative to H2). In addition, advantage is being taken of SWASs relatively large beam size of 33 × 45 at 553 GHz and 35 × 50 at 490 GHz to obtain large-area (~1° × 1°) maps of giant and dark clouds in the 13CO and C I lines. With the use of a 1.4 GHz bandwidth acousto-optical spectrometer, SWAS has the ability to simultaneously observe either the H2O, O2, C I, and 13CO lines or the H218O, O2, and C I lines. All measurements are being conducted with a velocity resolution less than 1 km s-1.


The Astrophysical Journal | 2000

Implications of Submillimeter Wave Astronomy Satellite Observations for Interstellar Chemistry and Star Formation

Edwin A. Bergin; Gary J. Melnick; John R. Stauffer; M. L. N. Ashby; G. Chin; Neal R. Erickson; Paul F. Goldsmith; Martin Harwit; J. E. Howe; S. C. Kleiner; David G. Koch; David A. Neufeld; Brian M. Patten; R. Plume; R. Schieder; R. L. Snell; Volker Tolls; Zhong Wang; G. Winnewisser; Y. F. Zhang

A long-standing prediction of steady state gas-phase chemical theory is that H2O and O2 are important reservoirs of elemental oxygen and major coolants of the interstellar medium. Analysis of Submillimeter Wave Astronomy Satellite (SWAS) observations has set sensitive upper limits on the abundance of O2 and has provided H2O abundances toward a variety of star-forming regions. Based on these results, we show that gaseous H2O and O2 are not dominant carriers of elemental oxygen in molecular clouds. Instead, the available oxygen is presumably frozen on dust grains in the form of molecular ices, with a significant portion potentially remaining in atomic form, along with CO, in the gas phase. H2O and O2 are also not significant coolants for quiescent molecular gas. In the case of H2O, a number of known chemical processes can locally elevate its abundance in regions with enhanced temperatures, such as warm regions surrounding young stars or in hot shocked gas. Thus, water can be a locally important coolant. The new information provided by SWAS, when combined with recent results from the Infrared Space Observatory, also provides several hard observational constraints for theoretical models of the chemistry in molecular clouds, and we discuss various models that satisfy these conditions.


The Astrophysical Journal | 2000

Water abundance in molecular cloud cores

R. L. Snell; J. E. Howe; M. L. N. Ashby; Edwin A. Bergin; G. Chin; Neal A. Erickson; Paul F. Goldsmith; Martin Harwit; S. C. Kleiner; David G. Koch; David A. Neufeld; Brian M. Patten; R. Plume; R. Schieder; John R. Stauffer; Volker Tolls; Zhong Wang; G. Winnewisser; Y. F. Zhang; Gary J. Melnick

We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the 110 → 101 transition of ortho-H2O at 557 GHz toward 12 molecular cloud cores. The water emission was detected in NGC 7538, ρ Oph A, NGC 2024, CRL 2591, W3, W3OH, Mon R2, and W33 and was not detected in TMC-1, L134N, and B335. We also present a small map of the H2O emission in S140. Observations of the H218O line were obtained toward S140 and NGC 7538, but no emission was detected. The abundance of ortho-H2O relative to H2 in the giant molecular cloud cores was found to vary between 6 × 10-10 and 1 × 10-8. Five of the cloud cores in our sample have previous H2O detections; however, in all cases the emission is thought to arise from hot cores with small angular extents. The H2O abundance estimated for the hot core gas is at least 100 times larger than in the gas probed by SWAS. The most stringent upper limit on the ortho-H2O abundance in dark clouds is provided in TMC-1, where the 3 σ upper limit on the ortho-H2O fractional abundance is 7 × 10-8.


The Astrophysical Journal | 2005

A Spitzer Study of Dusty Disks around Nearby, Young Stars

C. H. Chen; Brian M. Patten; M. Werner; C. D. Dowell; Karl R. Stapelfeldt; Inseok Song; John R. Stauffer; M. Blaylock; Karl D. Gordon; V. Krause

We have obtained Spitzer Space Telescope MIPS (Multiband Imaging Photometer for Spitzer) observations of 39 A- through M-type dwarfs, with estimated ages between 12 and 600 Myr; IRAC observations for a subset of 11 stars; and follow-up CSO SHARC II 350 μm observations for a subset of two stars. None of the objects observed with IRAC possess infrared excesses at 3.6-8.0 μm; however, seven objects observed with MIPS possess 24 and/or 70 μm excesses. Four objects (κ Phe, HD 92945, HD 119124, and AU Mic), with estimated ages 12-200 Myr, possess strong 70 μm excesses, ≥100% larger than their predicted photospheres, and no 24 μm excesses, suggesting that the dust grains in these systems are cold. One object (HD 112429) possesses moderate 24 and 70 μm excesses with a color temperature, Tgr = 100 K. Two objects (α1 Lib and HD 177724) possess such strong 24 μm excesses that their 12, 24, and 70 μm fluxes cannot be self-consistently modeled using a modified blackbody despite a 70 μm excess >2 times greater than the photosphere around α1 Lib. The strong 24 μm excesses may be the result of emission in spectral features, as observed toward the Hale-Bopp star HD 69830.


The Astrophysical Journal | 2007

Far-infrared properties of M dwarfs

Thomas N. Gautier; G. H. Rieke; J. A. Stansberry; G. Bryden; Karl R. Stapelfeldt; M. Werner; Charles A. Beichman; C. H. Chen; Kate Su; David E. Trilling; Brian M. Patten; Thomas L. Roellig

We report the mid- and far-infrared properties of nearby M dwarfs. Spitzer MIPS measurements were obtained for a sample of 62 stars at 24 μm, with subsamples of 41 and 20 stars observed at 70 and 160 μm, respectively. We compare the results with current models of M star photospheres and look for indications of circumstellar dust in the form of significant deviations of K-[24 μm] colors and 70 μm/24 μm flux ratios from the average M star values. At 24 μm, all 62 of the targets were detected; 70 μm detections were achieved for 20 targets in the subsample observed, and no detections were seen in the 160 μm subsample. No clear far-infrared excesses were detected in our sample. The average far-infrared excess relative to the photospheric emission of the M stars is at least 4 times smaller than the similar average for a sample of solar-type stars. However, this limit allows the average fractional infrared luminosity in the M-star sample to be similar to that for more massive stars. We have also set low limits (10-4 to 10-9 M⊕ depending on location) for the maximum mass of dust possible around our stars.


Astrophysical Journal Supplement Series | 2007

Near- and mid-infrared photometry of the pleiades and a new list of substellar candidate members

John R. Stauffer; Lee Hartmann; Giovanni G. Fazio; Lori E. Allen; Brian M. Patten; Patrick J. Lowrance; Robert L. Hurt; Luisa Marie Rebull; Roc Michael Cutri; Solange V. Ramirez; Erick T. Young; G. H. Rieke; Nadya I. Gorlova; James Muzerolle; Cathy L. Slesnick; Michael F. Skrutskie

We make use of new near- and mid-IR photometry of the Pleiades cluster in order to help identify proposed cluster members. We also use the new photometry with previously published photometry to define the single-star main-sequence locus at the age of the Pleiades in a variety of color-magnitude planes. The new near- and mid-IR photometry extend effectively 2 mag deeper than the 2MASS All-Sky Point Source catalog, and hence allow us to select a new set of candidate very low-mass and substellar mass members of the Pleiades in the central square degree of the cluster. We identify 42 new candidate members fainter than K_s = 14 (corresponding to 0.1 M_☉). These candidate members should eventually allow a better estimate of the cluster mass function to be made down to of order 0.04 M_☉. We also use new IRAC data, in particular the images obtained at 8 μm, in order to comment briefly on interstellar dust in and near the Pleiades. We confirm, as expected, that—with one exception—a sample of low-mass stars recently identified as having 24 μm excesses due to debris disks do not have significant excesses at IRAC wavelengths. However, evidence is also presented that several of the Pleiades high-mass stars are found to be impacting with local condensations of the molecular cloud that is passing through the Pleiades at the current epoch.


The Astrophysical Journal | 2006

A sensitive search for variability in late L dwarfs : The quest for weather

M. Morales-Calderon; John R. Stauffer; J. Davy Kirkpatrick; Sean J. Carey; Christopher R. Gelino; D. Barrado y Navascués; Luisa Marie Rebull; Patrick J. Lowrance; Mark S. Marley; David Charbonneau; Brian M. Patten; S. T. Megeath; Derek L. Buzasi

We have conducted a photometric monitoring program of three field late L brown dwarfs (DENIS-P J0255-4700, 2MASS J0908+5032, and 2MASS J2244+2043) looking for evidence of nonaxisymmetric structure or temporal variability in their photospheres. The observations were performed using Spitzer IRAC 4.5 and 8 μm bandpasses and were designed to cover at least one rotational period of each object; 1 σ rms uncertainties of less than 3 mmag at 4.5 μm and around 9 mmag at 8 μm were achieved. Two out of the three objects studied exhibit some modulation in their light curves at 4.5 μm—but not 8 μm—with periods of 7.4 hr (DENIS 0255) and 4.6 hr (2MA 2244) and peak-to-peak amplitudes of 10 and 8 mmag. Although the lack of detectable 8 μm variation suggests an instrumental origin for the detected variations, the data may nevertheless still be consistent with intrinsic variability, since the shorter wavelength IRAC bandpasses probe more deeply into late L dwarf atmospheres than the longer wavelengths. A cloud feature occupying a small percentage (1%-2%) of the visible hemisphere could account for the observed amplitude of variation. If, instead, the variability is indeed instrumental in origin, then our nonvariable L dwarfs could be either completely covered with clouds or objects whose clouds are smaller and uniformly distributed. Such scenarios would lead to very small photometric variations. Follow-up IRAC photometry at 3.6 and 5.8 μm bandpasses should distinguish between the two cases. In any event, the present observations provide the most sensitive search to date for structure in the photospheres of late L dwarfs at mid-IR wavelengths, and our photometry provides stringent upper limits to the extent to which the photospheres of these transition L dwarfs are structured.

Collaboration


Dive into the Brian M. Patten's collaboration.

Top Co-Authors

Avatar

John R. Stauffer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge