Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Niland is active.

Publication


Featured researches published by Brian Niland.


Arthritis & Rheumatism | 2002

Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus

Peter Gergely; Craig E. Grossman; Brian Niland; Ferenc Puskas; Hom Neupane; Fatme Allam; Katalin Banki; Paul E. Phillips; Andras Perl

OBJECTIVE Peripheral blood lymphocytes (PBLs) from systemic lupus erythematosus (SLE) patients exhibit increased spontaneous and diminished activation-induced apoptosis. We tested the hypothesis that key biochemical checkpoints, the mitochondrial transmembrane potential (deltapsim) and production of reactive oxygen intermediates (ROIs), mediate the imbalance of apoptosis in SLE. METHODS We assessed the deltapsim with potentiometric dyes, measured ROI production with oxidation-sensitive fluorochromes, and monitored cell death by annexin V and propidium iodide staining of lymphocytes, using flow cytometry. Intracellular glutathione levels were measured by high-performance liquid chromatography, while ATP and ADP levels were assessed by the luciferin-luciferase assay. RESULTS Both deltapsim and ROI production were elevated in the 25 SLE patients compared with the 25 healthy subjects and the 10 rheumatoid arthritis patients. Intracellular glutathione contents were diminished, suggesting increased utilization of reducing equivalents in SLE. H2O2, a precursor of ROIs, increased deltapsim and caused apoptosis in normal PBLs. In contrast, H2O2-induced apoptosis and deltapsim elevation were diminished, particularly in T cells, and the rate of necrotic cell death was increased in patients with SLE. The intracellular ATP content and the ATP:ADP ratio were reduced and correlated with the deltapsim elevation in lupus. CD3:CD28 costimulation led to transient elevation of the deltapsim, followed by ATP depletion, and sensitization of normal PBLs to H2O2-induced necrosis. Depletion of ATP by oligomycin, an inhibitor of F0F1-ATPase, had similar effects. CONCLUSION T cell activation and apoptosis are mediated by deltapsim elevation and increased ROI production. Mitochondrial hyperpolarization and the resultant ATP depletion sensitize T cells for necrosis, which may significantly contribute to inflammation in patients with SLE.


Journal of Immunology | 2002

Persistent Mitochondrial Hyperpolarization, Increased Reactive Oxygen Intermediate Production, and Cytoplasmic Alkalinization Characterize Altered IL-10 Signaling in Patients with Systemic Lupus Erythematosus

Peter Gergely; Brian Niland; Nick J. Gonchoroff; Rudolf Pullmann; Paul E. Phillips; Andras Perl

Abnormal death signaling in lymphocytes of systemic lupus erythematosus (SLE) patients has been associated with elevation of the mitochondrial transmembrane potential (Δψm) and increased production of reactive oxygen intermediates (ROI). The resultant ATP depletion sensitizes T cells for necrosis that may significantly contribute to inflammation in patients with SLE. In the present study, the role of mitochondrial signal processing in T cell activation was investigated. CD3/CD28 costimulation of PBL elicited transient mitochondrial hyperpolarization and intracellular pH (pHi) elevation, followed by increased ROI production. Baseline Δψm, ROI production, and pHi were elevated, while T cell activation-induced changes were blunted in 15 patients with SLE in comparison with 10 healthy donors and 10 rheumatoid arthritis patients. Similar to CD3/CD28 costimulation, treatment of control PBL with IL-3, IL-10, TGF-β1, and IFN-γ led to transient Δψm elevation. IL-10 had diametrically opposing effects on mitochondrial signaling in lupus and control donors. Unlike healthy or rheumatoid arthritis PBL, cells of lupus patients were resistant to IL-10-induced mitochondrial hyperpolarization. By contrast, IL-10 enhanced ROI production and cell death in lupus PBL without affecting ROI levels and survival of control PBL. Ab-mediated IL-10 blockade or stimulation with antagonistic lymphokine IL-12 normalized baseline and CD3/CD28-induced changes in ROI production and pHi with no impact on Δψm of lupus PBL. The results suggest that mitochondrial hyperpolarization, increased ROI production, and cytoplasmic alkalinization play crucial roles in altered IL-10 responsiveness in SLE.


Journal of Biological Chemistry | 2006

Regulation of CD4 Expression via Recycling by HRES-1/RAB4 Controls Susceptibility to HIV Infection

Gyorgy Nagy; Jeffrey P. Ward; Dick D. Mosser; Agnes Koncz; Peter Gergely; Christina Stancato; Yueming Qian; David Fernandez; Brian Niland; Craig E. Grossman; Tiffany Telarico; Katalin Banki; Andras Perl

A novel 2986-base transcript encoded by the antisense strand of the HRES-1 human endogenous retrovirus was isolated from peripheral blood lymphocytes. This transcript codes for a 218-amino acid protein, termed HRES-1/Rab4, based on homology to the Rab4 family of small GTPases. Antibody 13407 raised against recombinant HRES-1/Rab4 detected a native protein of identical molecular weight in human T cells. HRES-1 nucleotides 2151-1606, located upstream of HRES-1/Rab4 exon 1, have promoter activity when oriented in the direction of HRES-1/Rab4 transcription. The human immunodeficiency virus, type 1 (HIV-1), tat gene stimulates transcriptional activity of the HRES-1/Rab4 promoter via trans-activation of the HRES-1 long terminal repeat. Transfection of HIV-1 tat into HeLa cells or infection of H9 and Jurkat cells by HIV-1 increased HRES-1/Rab4 protein levels. Overexpression of HRES-1/Rab4 in Jurkat cells abrogated HIV infection, gag p24 production, and apoptosis, whereas dominant-negative HRES-1/Rab4S27N had the opposite effects. HRES-1/Rab4 inhibited surface expression of CD4 and targeted it for lysosomal degradation. HRES-1/Rab4S27N enhanced surface expression, recycling, and total cellular CD4 content. Infection by HIV elicited a coordinate down-regulation of CD4 and up-regulation of HRES-1/Rab4 in PBL. Moreover, overexpression of HRES-1/Rab4 reduced CD4 expression on peripheral blood CD4+ T cells. Stimulation by HIV-1 of HRES-1/Rab4 expression and its regulation of CD4 recycling reveal novel coordinate interactions between an infectious retrovirus and the human genome.


Journal of Clinical Investigation | 2009

Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine

Robert Hanczko; David Fernandez; Edward Doherty; Yueming Qian; György Vas; Brian Niland; Tiffany Telarico; Adinoyi O. Garba; Sanjay K. Banerjee; Frank A. Middleton; Donna Barrett; Maureen Barcza; Katalin Banki; Steve K. Landas; Andras Perl

Although oxidative stress has been implicated in acute acetaminophen-induced liver failure and in chronic liver cirrhosis and hepatocellular carcinoma (HCC), no common underlying metabolic pathway has been identified. Recent case reports suggest a link between the pentose phosphate pathway (PPP) enzyme transaldolase (TAL; encoded by TALDO1) and liver failure in children. Here, we show that Taldo1-/- and Taldo1+/- mice spontaneously developed HCC, and Taldo1-/- mice had increased susceptibility to acetaminophen-induced liver failure. Oxidative stress in Taldo1-/- livers was characterized by the accumulation of sedoheptulose 7-phosphate, failure to recycle ribose 5-phosphate for the oxidative PPP, depleted NADPH and glutathione levels, and increased production of lipid hydroperoxides. Furthermore, we found evidence of hepatic mitochondrial dysfunction, as indicated by loss of transmembrane potential, diminished mitochondrial mass, and reduced ATP/ADP ratio. Reduced beta-catenin phosphorylation and enhanced c-Jun expression in Taldo1-/- livers reflected adaptation to oxidative stress. Taldo1-/- hepatocytes were resistant to CD95/Fas-mediated apoptosis in vitro and in vivo. Remarkably, lifelong administration of the potent antioxidant N-acetylcysteine (NAC) prevented acetaminophen-induced liver failure, restored Fas-dependent hepatocyte apoptosis, and blocked hepatocarcinogenesis in Taldo1-/- mice. These data reveal a protective role for the TAL-mediated branch of the PPP against hepatocarcinogenesis and identify NAC as a promising treatment for liver disease in TAL deficiency.


Biochemical Journal | 2008

Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing.

Yueming Qian; Sanjay Banerjee; Craig E. Grossman; Wendy Amidon; Gyorgy Nagy; Maureen Barcza; Brian Niland; David R. Karp; Frank A. Middleton; Katalin Banki; Andras Perl

TAL (transaldolase) was originally described in the yeast as an enzyme of the PPP (pentose phosphate pathway). However, certain organisms and mammalian tissues lack TAL, and the overall reason for its existence is unclear. Recently, deletion of Ser(171) (TALDeltaS171) was found in five patients causing inactivation, proteasome-mediated degradation and complete deficiency of TAL. In the present study, microarray and follow-up Western-blot, enzyme-activity and metabolic studies of TALDeltaS171 TD (TAL-deficient) lymphoblasts revealed co-ordinated changes in the expression of genes involved in the PPP, mitochondrial biogenesis, oxidative stress, and Ca(2+) fluxing. Sedoheptulose 7-phosphate was accumulated, whereas G6P (glucose 6-phosphate) was depleted, indicating a failure to recycle G6P for the oxidative branch of the PPP. Nucleotide analysis showed depletion of NADPH and NAD(+) and accumulation of ADP-ribose. TD cells have diminished Deltapsi(m) (mitochondrial transmembrane potential) and increased mitochondrial mass associated with increased production of nitric oxide and ATP. TAL deficiency resulted in enhanced spontaneous and H(2)O(2)-induced apoptosis. TD lymphoblasts showed increased expression of CD38, which hydrolyses NAD(+) into ADP-ribose, a trigger of Ca(2+) release from the endoplasmic reticulum that, in turn, facilitated CD20-induced apoptosis. By contrast, TD cells were resistant to CD95/Fas-induced apoptosis, owing to a dependence of caspase activity on redox-sensitive cysteine residues. Normalization of TAL activity by adeno-associated-virus-mediated gene transfer reversed the elevated CD38 expression, ATP and Ca(2+) levels, suppressed H(2)O(2)- and CD20-induced apoptosis and enhanced Fas-induced cell death. The present study identified the TAL deficiency as a modulator of mitochondrial homoeostasis, Ca(2+) fluxing and apoptosis.


Journal of Immunology | 2005

CD8+ T Cell-Mediated HLA-A*0201-Restricted Cytotoxicity to Transaldolase Peptide 168–176 in Patients with Multiple Sclerosis

Brian Niland; Katalin Banki; William E. Biddison; Andras Perl

Transaldolase (TAL) is expressed at selectively high levels in oligodendrocytes and targeted by autoreactive T cells of patients with multiple sclerosis (MS). Among 14 TAL peptides with predicted HLA-A2 binding, TAL 168–176 (LLFSFAQAV, TALpep) exhibited high affinity for HLA-A2. Prevalence of HLA-A2-restricted CD8+ T cells specific for TALpep was increased in PBMC of HLA-A2+ MS patients, as compared with HLA-A2− MS patients, HLA-A2+ other neurological disease patients, and HLA-A2+ healthy donors. HLA-A*0201/TALpep tetramers detected increased frequency of TAL-specific CD8+ T cells, and precursor frequency of TAL-specific IFN-γ-producing T cells was increased in each of seven HLA-A2+ MS patients tested. Stimulation by TALpep or rTAL of PBMC from HLA-A2+ MS patients elicited killing of TALpep-pulsed HLA-A2-transfected HmyA2.1 lymphoma cells, but not HLA-A3-transfected control HmyA3.1 targets. Without peptide pulsing of targets, HLA-A2-transfected, but not control MO3.13 oligodendroglial cells, expressing high levels of endogenous TAL, were also killed by CD8+ CTL of MS patients, indicating recognition of endogenously processed TAL. TCR Vβ repertoire analysis revealed use of the TCR Vβ14 gene by T cell lines (TCL) of MS patients generated via stimulation by TAL- or TALpep-pulsed APCs. All TAL-specific TCL-binding HLA-A*0201/TALpep tetramers expressed TCR Vβ14 on the cell surface. Moreover, Ab to TCR Vβ14 abrogated cytotoxicity by HLA-A2-restricted TAL-specific TCL. Therefore, TAL-specific CTL may serve as a novel target for therapeutic intervention in patients with MS.


Antioxidants & Redox Signaling | 2002

Differential Regulation of Hydrogen Peroxide and Fas-Dependent Apoptosis Pathways by Dehydroascorbate, the Oxidized Form of Vitamin C

Ferenc Puskas; Peter Gergely; Brian Niland; Katalin Banki; Andras Perl

Dehydroascorbate (DHA), the oxidized form of vitamin C (ascorbate), enhanced antioxidant defenses of human T cells preferentially importing DHA over ascorbate. In itself, DHA did not affect cytosolic or mitochondrial reactive oxygen intermediate levels as monitored by flow cytometry using oxidation-sensitive fluorescent probes. DHA at 200-1,000 microM stimulated activity of pentose phosphate pathway enzymes glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and transaldolase, elevated intracellular glutathione levels, and inhibited H(2)O(2)-induced changes in mitochondrial transmembrane potential and cell death. With respect to the CD4 antigen, DHA selectively enhanced cell-surface expression of the Fas receptor and increased susceptibility of Jurkat and H9 human T cells to Fas-mediated cell death. The data identify DHA as a selective regulator of H(2)O(2)- and Fas-dependent apoptosis pathways.


Journal of Immunology | 2010

Cleavage of Transaldolase by Granzyme B Causes the Loss of Enzymatic Activity with Retention of Antigenicity for Multiple Sclerosis Patients

Brian Niland; Gabriella Miklossy; Katalin Banki; William E. Biddison; Livia Casciola-Rosen; Antony Rosen; Denis Martinvalet; Judy Lieberman; Andras Perl

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the CNS resulting from a progressive loss of oligodendrocytes. Transaldolase (TAL) is expressed at selectively high levels in oligodendrocytes of the brain, and postmortem sections show concurrent loss of myelin basic protein and TAL from sites of demyelination. Infiltrating CD8+ CTLs are thought to play a key role in oligodendrocyte cell death. Cleavage by granzyme B (GrB) is predictive for autoantigenicity of self-proteins, thereby further implicating CTL-induced death in the initiation and propagation of autoimmunity. The precursor frequency and CTL activity of HLA-A2–restricted TAL 168–176–specific CD8+ T cells is increased in MS patients. In this paper, we show that TAL, but not myelin basic protein, is specifically cleaved by human GrB. The recognition site of GrB that resulted in the cleavage of a dominant TAL fragment was mapped to a VVAD motif at aa residue 27 by N-terminal sequencing and confirmed by site-directed mutagenesis. The major C-terminal GrB cleavage product, residues 28–337, had no enzymatic activity but retained the antigenicity of full-length TAL, effectively stimulating the proliferation and CTL activity of PBMCs and of CD8+ T cell lines from patients with MS. Sera of MS patients exhibited similar binding affinity to wild-type and GrB-cleaved TAL. Because GrB mediates the killing of target cells and cleavage by GrB is predictive of autoantigen status of self proteins, GrB-cleaved TAL-specific T cell-mediated cytotoxicity may contribute to the progressive destruction of oligodendrocytes in patients with MS.


Biochemical Journal | 2004

Deletion of Ser-171 causes inactivation, proteasome-mediated degradation and complete deficiency of human transaldolase

Craig E. Grossman; Brian Niland; Christina Stancato; Nanda M. Verhoeven; Marjo S. van der Knaap; Cornelis Jakobs; Lawrence Brown; Sandor Vajda; Katalin Banki; Andras Perl

Homozygous deletion of three nucleotides coding for Ser-171 (S171) of TAL-H (human transaldolase) has been identified in a female patient with liver cirrhosis. Accumulation of sedoheptulose 7-phosphate raised the possibility of TAL (transaldolase) deficiency in this patient. In the present study, we show that the mutant TAL-H gene was effectively transcribed into mRNA, whereas no expression of the TALDeltaS171 protein or enzyme activity was detected in TALDeltaS171 fibroblasts or lymphoblasts. Unlike wild-type TAL-H-GST fusion protein (where GST stands for glutathione S-transferase), TALDeltaS171-GST was solubilized only in the presence of detergents, suggesting that deletion of Ser-171 caused conformational changes. Recombinant TALDeltaS171 had no enzymic activity. TALDeltaS171 was effectively translated in vitro using rabbit reticulocyte lysates, indicating that the absence of TAL-H protein in TALDeltaS171 fibroblasts and lymphoblasts may be attributed primarily to rapid degradation. Treatment with cell-permeable proteasome inhibitors led to the accumulation of TALDeltaS171 in whole cell lysates and cytosolic extracts of patient lymphoblasts, suggesting that deletion of Ser-171 led to rapid degradation by the proteasome. Although the TALDeltaS171 protein became readily detectable in proteasome inhibitor-treated cells, it displayed no appreciable enzymic activity. The results suggest that deletion of Ser-171 leads to inactivation and proteasome-mediated degradation of TAL-H. Since TAL-H is a regulator of apoptosis signal processing, complete deficiency of TAL-H may be relevant for the pathogenesis of liver cirrhosis.


Methods in molecular medicine | 2004

Evaluation of Autoimmunity to Transaldolase in Multiple Sclerosis

Brian Niland; Andras Perl

Transaldolase is a target of autoimmunity mediated by T cells and antibody (Ab) in patients with multiple sclerosis. Functional T-cell assays, T- and B-cell epitope mapping, and detection of transaldolase-specific antibodies in patients with multiple sclerosis are described. Recombinant transaldolase was produced in a prokaryotic expression vector for use in Western blot analysis of sera of these patients. Overlapping transaldolase peptides 15 amino acids (aa) long were synthesized onto cellulose membranes to map immunodominant B-cell epitopes. Amino acid sequence homologies between viral peptides and immunodominant B-cell epitopes of transaldolase were identified using a computer-based algorithm. Direct assessment of molecular mimicry between transaldolase B-cell epitopes and related viral peptides is also shown. T-cell epitopes are mapped in a T-cell proliferation assay using multiple sclerosis patient and control donor cells. Autoantigen-specific T cells are identified by MHC-peptide tetramer staining using flow cytometry analysis.

Collaboration


Dive into the Brian Niland's collaboration.

Top Co-Authors

Avatar

Andras Perl

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Katalin Banki

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Craig E. Grossman

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

David Fernandez

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Peter Gergely

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Yueming Qian

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Christina Stancato

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Ferenc Puskas

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Frank A. Middleton

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Gyorgy Nagy

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge