Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian P. Anton is active.

Publication


Featured researches published by Brian P. Anton.


Nucleic Acids Research | 2012

The methylomes of six bacteria

Iain A. Murray; Tyson A. Clark; Richard D. Morgan; Matthew Boitano; Brian P. Anton; Khai Luong; Alexey Fomenkov; Stephen W. Turner; Jonas Korlach; Richard J. Roberts

Six bacterial genomes, Geobacter metallireducens GS-15, Chromohalobacter salexigens, Vibrio breoganii 1C-10, Bacillus cereus ATCC 10987, Campylobacter jejuni subsp. jejuni 81-176 and C. jejuni NCTC 11168, all of which had previously been sequenced using other platforms were re-sequenced using single-molecule, real-time (SMRT) sequencing specifically to analyze their methylomes. In every case a number of new N6-methyladenine (m6A) and N4-methylcytosine (m4C) methylation patterns were discovered and the DNA methyltransferases (MTases) responsible for those methylation patterns were assigned. In 15 cases, it was possible to match MTase genes with MTase recognition sequences without further sub-cloning. Two Type I restriction systems required sub-cloning to differentiate their recognition sequences, while four MTase genes that were not expressed in the native organism were sub-cloned to test for viability and recognition sequences. Two of these proved active. No attempt was made to detect 5-methylcytosine (m5C) recognition motifs from the SMRT® sequencing data because this modification produces weaker signals using current methods. However, all predicted m6A and m4C MTases were detected unambiguously. This study shows that the addition of SMRT sequencing to traditional sequencing approaches gives a wealth of useful functional information about a genome showing not only which MTase genes are active but also revealing their recognition sequences.


PLOS Biology | 2013

The COMBREX Project: Design, Methodology, and Initial Results

Brian P. Anton; Yi-Chien Chang; Peter Brown; Han-Pil Choi; Lina L. Faller; Jyotsna Guleria; Zhenjun Hu; Niels Klitgord; Ami Levy-Moonshine; Almaz Maksad; Varun Mazumdar; Mark McGettrick; Lais Osmani; Revonda Pokrzywa; John Rachlin; Rajeswari Swaminathan; Benjamin Allen; Genevieve Housman; Caitlin Monahan; Krista Rochussen; Kevin Tao; Ashok S. Bhagwat; Steven E. Brenner; Linda Columbus; Valérie de Crécy-Lagard; Donald J. Ferguson; Alexey Fomenkov; Giovanni Gadda; Richard D. Morgan; Andrei L. Osterman

Experimental data exists for only a vanishingly small fraction of sequenced microbial genes. This community page discusses the progress made by the COMBREX project to address this important issue using both computational and experimental resources.


Proceedings of the National Academy of Sciences of the United States of America | 2008

RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli

Brian P. Anton; Lana Saleh; Jack S. Benner; Elisabeth A. Raleigh; Simon Kasif; Richard J. Roberts

Ribosomal protein S12 undergoes a unique posttranslational modification, methylthiolation of residue D88, in Escherichia coli and several other bacteria. Using mass spectrometry, we have identified the enzyme responsible for this modification in E. coli, the yliG gene product. This enzyme, which we propose be called RimO, is a radical-S-adenosylmethionine protein that bears strong sequence similarity to MiaB, which methylthiolates tRNA. We show that RimO and MiaB represent two of four subgroups of a larger, ancient family of likely methylthiotransferases, the other two of which are typified by Bacillus subtilis YqeV and Methanococcus jannaschii Mj0867, and we predict that RimO is unique among these subgroups in its modification of protein as opposed to tRNA. Despite this, RimO has not significantly diverged from the other three subgroups at the sequence level even within the C-terminal TRAM domain, which in the methyltransferase RumA is known to bind the RNA substrate and which we presume to be responsible for substrate binding and recognition in all four subgroups of methylthiotransferases. To our knowledge, RimO and MiaB represent the most extreme known case of resemblance between enzymes modifying protein and nucleic acid. The initial results presented here constitute a bioinformatics-driven prediction with preliminary experimental validation that should serve as the starting point for several interesting lines of further inquiry.


PLOS ONE | 2009

The complete genome of Teredinibacter turnerae T7901: An intracellular endosymbiont of marine wood-boring bivalves (shipworms)

Joyce C. Yang; Ramana Madupu; A. Scott Durkin; Nathan A. Ekborg; Chandra Sekhar Pedamallu; Jessica B. Hostetler; Diana Radune; Bradley S. Toms; Bernard Henrissat; Pedro M. Coutinho; Sandra Schwarz; Lauren Field; Amaro E. Trindade-Silva; Carlos A. G. Soares; Sherif I. Elshahawi; Amro Hanora; Eric W. Schmidt; Margo G. Haygood; Janos Posfai; Jack S. Benner; Catherine L. Madinger; John Nove; Brian P. Anton; Kshitiz Chaudhary; Jeremy M. Foster; Alex Holman; Sanjay Kumar; Philip A. Lessard; Yvette A. Luyten; Barton E. Slatko

Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the hosts nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.


Biochemistry | 2009

Characterization of RimO, a New Member of the Methylthiotransferase Subclass of the Radical SAM Superfamily †

Kyung-Hoon Lee; Lana Saleh; Brian P. Anton; Catherine L. Madinger; Jack S. Benner; David F. Iwig; Richard J. Roberts; Carsten Krebs; Squire J. Booker

RimO, encoded by the yliG gene in Escherichia coli, has been recently identified in vivo as the enzyme responsible for the attachment of a methylthio group on the beta-carbon of Asp88 of the small ribosomal protein S12 [Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 1826-1831]. To date, it is the only enzyme known to catalyze methylthiolation of a protein substrate; the four other naturally occurring methylthio modifications have been observed on tRNA. All members of the methylthiotransferase (MTTase) family, to which RimO belongs, have been shown to contain the canonical CxxxCxxC motif in their primary structures that is typical of the radical S-adenosylmethionine (SAM) family of proteins. MiaB, the only characterized MTTase, and the enzyme experimentally shown to be responsible for methylthiolation of N(6)-isopentenyladenosine of tRNA in E. coli and Thermotoga maritima, has been demonstrated to harbor two distinct [4Fe-4S] clusters. Herein, we report in vitro biochemical and spectroscopic characterization of RimO. We show by analytical and spectroscopic methods that RimO, overproduced in E. coli in the presence of iron-sulfur cluster biosynthesis proteins from Azotobacter vinelandii, contains one [4Fe-4S](2+) cluster. Reconstitution of this form of RimO (RimO(rcn)) with (57)Fe and sodium sulfide results in a protein that contains two [4Fe-4S](2+) clusters, similar to MiaB. We also show by mass spectrometry that RimO(rcn) catalyzes the attachment of a methylthio group to a peptide substrate analogue that mimics the loop structure bearing aspartyl 88 of the S12 ribosomal protein from E. coli. Kinetic analysis of this reaction shows that the activity of RimO(rcn) in the presence of the substrate analogue does not support a complete turnover. We discuss the possible requirement for an assembled ribosome for fully active RimO in vitro. Our findings are consistent with those of other enzymes that catalyze sulfur insertion, such as biotin synthase, lipoyl synthase, and MiaB.


Nucleic Acids Research | 2014

The complex methylome of the human gastric pathogen Helicobacter pylori

Juliane Krebes; Richard D. Morgan; Boyke Bunk; Cathrin Spröer; Khai Luong; Raphael Parusel; Brian P. Anton; Christoph König; Christine Josenhans; Jörg Overmann; Richard J. Roberts; Jonas Korlach; Sebastian Suerbaum

The genome of Helicobacter pylori is remarkable for its large number of restriction-modification (R-M) systems, and strain-specific diversity in R-M systems has been suggested to limit natural transformation, the major driving force of genetic diversification in H. pylori. We have determined the comprehensive methylomes of two H. pylori strains at single base resolution, using Single Molecule Real-Time (SMRT®) sequencing. For strains 26695 and J99-R3, 17 and 22 methylated sequence motifs were identified, respectively. For most motifs, almost all sites occurring in the genome were detected as methylated. Twelve novel methylation patterns corresponding to nine recognition sequences were detected (26695, 3; J99-R3, 6). Functional inactivation, correction of frameshifts as well as cloning and expression of candidate methyltransferases (MTases) permitted not only the functional characterization of multiple, yet undescribed, MTases, but also revealed novel features of both Type I and Type II R-M systems, including frameshift-mediated changes of sequence specificity and the interaction of one MTase with two alternative specificity subunits resulting in different methylation patterns. The methylomes of these well-characterized H. pylori strains will provide a valuable resource for future studies investigating the role of H. pylori R-M systems in limiting transformation as well as in gene regulation and host interaction.


Nucleic Acids Research | 2011

COMBREX: a project to accelerate the functional annotation of prokaryotic genomes

Richard J. Roberts; Yi Chien Chang; Zhenjun Hu; John Rachlin; Brian P. Anton; Revonda Pokrzywa; Han Pil Choi; Lina L. Faller; Jyotsna Guleria; Genevieve Housman; Niels Klitgord; Varun Mazumdar; Mark McGettrick; Lais Osmani; Rajeswari Swaminathan; Kevin Tao; Stan Letovsky; Dennis Vitkup; Daniel Segrè; Charles DeLisi; Martin Steffen; Simon Kasif

COMBREX (http://combrex.bu.edu) is a project to increase the speed of the functional annotation of new bacterial and archaeal genomes. It consists of a database of functional predictions produced by computational biologists and a mechanism for experimental biochemists to bid for the validation of those predictions. Small grants are available to support successful bids.


Nucleic Acids Research | 2010

Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis

Brian P. Anton; Susan P. Russell; Jason Vertrees; Simon Kasif; Elisabeth A. Raleigh; Patrick A. Limbach; Richard J. Roberts

Methylthiotransferases (MTTases) are a closely related family of proteins that perform both radical-S-adenosylmethionine (SAM) mediated sulfur insertion and SAM-dependent methylation to modify nucleic acid or protein targets with a methyl thioether group (–SCH3). Members of two of the four known subgroups of MTTases have been characterized, typified by MiaB, which modifies N6-isopentenyladenosine (i6A) to 2-methylthio-N6-isopentenyladenosine (ms2i6A) in tRNA, and RimO, which modifies a specific aspartate residue in ribosomal protein S12. In this work, we have characterized the two MTTases encoded by Bacillus subtilis 168 and find that, consistent with bioinformatic predictions, ymcB is required for ms2i6A formation (MiaB activity), and yqeV is required for modification of N6-threonylcarbamoyladenosine (t6A) to 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) in tRNA. The enzyme responsible for the latter activity belongs to a third MTTase subgroup, no member of which has previously been characterized. We performed domain-swapping experiments between YmcB and YqeV to narrow down the protein domain(s) responsible for distinguishing i6A from t6A and found that the C-terminal TRAM domain, putatively involved with RNA binding, is likely not involved with this discrimination. Finally, we performed a computational analysis to identify candidate residues outside the TRAM domain that may be involved with substrate recognition. These residues represent interesting targets for further analysis.


Proteomics | 2008

Physical and computational analysis of the yeast Kluyveromyces lactis secreted proteome

Catherine L. Swaim; Brian P. Anton; Shamik S. Sharma; Christopher H. Taron; Jack S. Benner

Secretion of proteins is the most common approach to protein expression in Kluyveromyces lactis. A proteomic analysis was performed on spent fermentation medium following bioreactor propagation of a wild‐type industrial strain to identify proteins naturally secreted by K. lactis cells. Multidimensional separations were conducted and RP online ESI‐MS/MS analysis identified 81 secreted proteins. In addition, an in silico analysis predicted 178 K. lactis proteins to be secreted via the general secretory pathway (GSP). These two datasets were compared and approximately 70% of the K. lactis proteins detected in the culture medium possessed a GSP sequence. The detected proteins included those involved with cell wall structure and synthesis, carbohydrate metabolism, and proteolysis, a result that may have significant bearing on heterologous protein expression. Additionally, both the experimental and in silico datasets were compared to similar, previously published datasets for Candida albicans. With the methodology presented here, we provide the deepest penetration into a yeast secretome yet reported.


BMC Bioinformatics | 2005

Phylogenetic detection of conserved gene clusters in microbial genomes

Yu Zheng; Brian P. Anton; Richard J. Roberts; Simon Kasif

BackgroundMicrobial genomes contain an abundance of genes with conserved proximity forming clusters on the chromosome. However, the conservation can be a result of many factors such as vertical inheritance, or functional selection. Thus, identification of conserved gene clusters that are under functional selection provides an effective channel for gene annotation, microarray screening, and pathway reconstruction. The problem of devising a robust method to identify these conserved gene clusters and to evaluate the significance of the conservation in multiple genomes has a number of implications for comparative, evolutionary and functional genomics as well as synthetic biology.ResultsIn this paper we describe a new method for detecting conserved gene clusters that incorporates the information captured by a genome phylogenetic tree. We show that our method can overcome the common problem of overestimation of significance due to the bias in the genome database and thereby achieve better accuracy when detecting functionally connected gene clusters. Our results can be accessed at database GeneChords http://genomics10.bu.edu/GeneChords.ConclusionThe methodology described in this paper gives a scalable framework for discovering conserved gene clusters in microbial genomes. It serves as a platform for many other functional genomic analyses in microorganisms, such as operon prediction, regulatory site prediction, functional annotation of genes, evolutionary origin and development of gene clusters.

Collaboration


Dive into the Brian P. Anton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge