Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian P. Hedlund is active.

Publication


Featured researches published by Brian P. Hedlund.


Nature | 2013

Insights into the phylogeny and coding potential of microbial dark matter

Christian Rinke; Patrick Schwientek; Alexander Sczyrba; Natalia Ivanova; Iain Anderson; Jan-Fang Cheng; Aaron E. Darling; Stephanie Malfatti; Brandon K. Swan; Esther A. Gies; Jeremy A. Dodsworth; Brian P. Hedlund; Georgios Tsiamis; Stefan M. Sievert; Wen Tso Liu; Jonathan A. Eisen; Steven J. Hallam; Nikos C. Kyrpides; Ramunas Stepanauskas; Edward M. Rubin; Philip Hugenholtz; Tanja Woyke

Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called ‘microbial dark matter’. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A korarchaeal genome reveals insights into the evolution of the Archaea

James G. Elkins; Mircea Podar; David E. Graham; Kira S. Makarova; Yuri I. Wolf; Lennart Randau; Brian P. Hedlund; Céline Brochier-Armanet; Victor Kunin; Iain Anderson; Alla Lapidus; Eugene Goltsman; Kerrie Barry; Eugene V. Koonin; Philip Hugenholtz; Nikos C. Kyrpides; Gerhard Wanner; Paul G. Richardson; Martin Keller; Karl O. Stetter

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, “Candidatus Korarchaeum cryptofilum,” which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.


Applied and Environmental Microbiology | 2000

Anaerobic Naphthalene Degradation by Microbial Pure Cultures under Nitrate-Reducing Conditions

Karl J. Rockne; Joanne C. Chee-Sanford; Robert A. Sanford; Brian P. Hedlund; James T. Staley; Stuart E. Strand

ABSTRACT Pure bacterial cultures were isolated from a highly enriched denitrifying consortium previously shown to anaerobically biodegrade naphthalene. The isolates were screened for the ability to grow anaerobically in liquid culture with naphthalene as the sole source of carbon and energy in the presence of nitrate. Three naphthalene-degrading pure cultures were obtained, designated NAP-3-1, NAP-3-2, and NAP-4. Isolate NAP-3-1 tested positive for denitrification using a standard denitrification assay. Neither isolate NAP-3-2 nor isolate NAP-4 produced gas in the assay, but both consumed nitrate and NAP-4 produced significant amounts of nitrite. Isolates NAP-4 and NAP-3-1 transformed 70 to 90% of added naphthalene, and the transformation was nitrate dependent. No significant removal of naphthalene occurred under nitrate-limited conditions or in cell-free controls. Both cultures exhibited partial mineralization of naphthalene, representing 7 to 20% of the initial added14C-labeled naphthalene. After 57 days of incubation, the largest fraction of the radiolabel in both cultures was recovered in the cell mass (30 to 50%), with minor amounts recovered as unknown soluble metabolites. Nitrate consumption, along with the results from the 14C radiolabel study, are consistent with the oxidation of naphthalene coupled to denitrification for NAP-3-1 and nitrate reduction to nitrite for NAP-4. Phylogenetic analyses based on 16S ribosomal DNA sequences of NAP-3-1 showed that it was closely related to Pseudomonas stutzeri and that NAP-4 was closely related to Vibrio pelagius. This is the first report we know of that demonstrates nitrate-dependent anaerobic degradation and mineralization of naphthalene by pure cultures.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter

Cheryl Jenkins; Ram Samudrala; Iain Anderson; Brian P. Hedlund; Giulio Petroni; Natasha Michailova; Nicolás Pinel; Ross Overbeek; Giovanna Rosati; James T. Staley

Tubulins, the protein constituents of the microtubule cytoskeleton, are present in all known eukaryotes but have never been found in the Bacteria or Archaea. Here we report the presence of two tubulin-like genes [bacterial tubulin a (btuba) and bacterial tubulin b (btubb)] in bacteria of the genus Prosthecobacter (Division Verrucomicrobia). In this study, we investigated the organization and expression of these genes and conducted a comparative analysis of the bacterial and eukaryotic protein sequences, focusing on their phylogeny and 3D structures. The btuba and btubb genes are arranged as adjacent loci within the genome along with a kinesin light chain gene homolog. RT-PCR experiments indicate that these three genes are cotranscribed, and a probable promoter was identified upstream of btuba. On the basis of comparative modeling data, we predict that the Prosthecobacter tubulins are monomeric, unlike eukaryotic α and β tubulins, which form dimers and are therefore unlikely to form microtubule-like structures. Phylogenetic analyses indicate that the Prosthecobacter tubulins are quite divergent and do not support recent horizontal transfer of the genes from a eukaryote. The discovery of genes for tubulin in a bacterial genus may offer new insights into the evolution of the cytoskeleton.


Applied and Environmental Microbiology | 2008

Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs

Chuanlun L. Zhang; Qi Ye; Zhiyong Huang; Wen-Jun Li; Jinquan Chen; Zhao-Qi Song; Weidong Zhao; Christopher E. Bagwell; William P. Inskeep; Christian A. Ross; Lei Gao; Juergen Wiegel; Christopher S. Romanek; Everett L. Shock; Brian P. Hedlund

ABSTRACT Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1997

Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter

Brian P. Hedlund; John J. Gosink; James T. Staley

Four strains of nonmotile, prosthecate bacteria were isolated in the 1970s and assigned to the genus Prosthecobacter. These strains were compared genotypically by DNA/DNA reassociation and 16S rDNA based phylogenetic analyses. Genotypic comparisons were complemented with phenotypic characterizations. Together, these studies clearly indicate each Prosthecobacter strain represents a novel species of bacteria. We propose three new species of Prosthecobacter, P. dejongeii strain FC1, P. vanneervenii strain FC2, and P. debontii strain FC3; P. fusiformis is reserved for the type strain of the genus, strain FC4. Additionally, we propose the genera Prosthecobacter and Verrucomicrobium, currently members of the order Verrucomicrobiales, to comprise a novel higher order taxonomic group, the division Verrucomicrobia div. nov. and the class Verrumicrobiae class nov. Many novel members of the Verrucomicrobia, as revealed by molecular ecology studies, await isolation and description.


PLOS ONE | 2013

A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing

Weiguo Hou; Shang Wang; Hailiang Dong; Hongchen Jiang; Brandon R. Briggs; Joseph P. Peacock; Qiuyuan Huang; Liuqin Huang; Geng Wu; Xiao-Yang Zhi; Wen-Jun Li; Jeremy A. Dodsworth; Brian P. Hedlund; Chuanlun Zhang; Hilairy E. Hartnett; Paul Dijkstra; Bruce A. Hungate

The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.


Archives of Virology | 2002

Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments.

Reinhard Rachel; Marcus Bettstetter; Brian P. Hedlund; Monika Häring; A. Kessler; Karl O. Stetter; David Prangishvili

Summary. Electron microscopic studies of the viruses in two hot springs (85 °C, pH 1.5–2.0, and 75–93 °C, pH 6.5) in Yellowstone National Park revealed particles with twelve different morphotypes. This diversity encompassed known viruses of hyperthermophilic archaea, filamentous Lipothrixviridae, rod-shaped Rudiviridae, and spindle-shaped Fuselloviridae, and novel morphotypes previously not observed in nature. Two virus types resembled head-and-tail bacteriophages from the families Siphoviridae and Podoviridae, and constituted the first observation of these viruses in a hydrothermal environment. Viral hosts in the acidic spring were members of the hyperthermophilic archaeal genus Acidianus.


International Journal of Systematic and Evolutionary Microbiology | 2001

Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium.

Brian P. Hedlund; James T. Staley

Strain P-2P44T was isolated from creosote-contaminated marine sediments by using a most-probable number procedure in which phenanthrene was the sole carbon and energy source. Growth experiments showed that P-2P44T utilized several two- and three-ring polycyclic aromatic hydrocarbons (PAHs) as substrates, including naphthalene, 2-methylnaphthalene and phenanthrene. Additionally, gas-chromatography experiments showed that P-2P44T degraded several other PAHs, though it was unable to use them as sole sources of carbon and energy. Phylogenetic analyses confirmed that strain P-2P44T is a member of the genus Vibrio, most closely related to Vibrio splendidus. However, strain P-2P44T shared only 98.3% 16S rDNA identity and 35% DNA-DNA reassociation with the type strain of V. splendidus. Strain P-2P44T differed phenotypically from V. splendidus. Together, these differences indicated that strain P-2P44T represents a novel species in the genus Vibrio, for which the name Vibrio cyclotrophicus sp. nov. is proposed; the type strain is P-2P44T (= ATCC 700982T = PICC 106644T).


Applied and Environmental Microbiology | 2010

Moderately Thermophilic Magnetotactic Bacteria from Hot Springs in Nevada

Christopher T. Lefèvre; Fernanda Abreu; Marian L. Schmidt; Ulysses Lins; Richard B. Frankel; Brian P. Hedlund; Dennis A. Bazylinski

ABSTRACT Populations of a moderately thermophilic magnetotactic bacterium were discovered in Great Boiling Springs, Nevada, ranging from 32 to 63°C. Cells were small, Gram-negative, vibrioid to helicoid in morphology, and biomineralized a chain of bullet-shaped magnetite magnetosomes. Phylogenetically, based on 16S rRNA gene sequencing, the organism belongs to the phylum Nitrospirae.

Collaboration


Dive into the Brian P. Hedlund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen-Jun Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge