Brian P. Kelleher
Dublin City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian P. Kelleher.
Science of The Total Environment | 2014
Gillian McEneff; Leon Barron; Brian P. Kelleher; Brett Paull; Brian Quinn
Reports concerning the quantitative analysis of pharmaceuticals in marine ecosystems are somewhat limited. It is necessary to determine pharmaceutical fate and assess any potential risk of exposure to aquatic species and ultimately, seafood consumers. In the work presented herein, analytical methods were optimised and validated for the quantification of pharmaceutical residues in wastewater effluent, receiving marine waters and marine mussels (Mytilus spp.). Selected pharmaceuticals included two non-steroidal anti-inflammatory drugs (NSAIDs) (diclofenac and mefenamic acid), an antibiotic (trimethoprim), an antiepileptic (carbamazepine) and a lipid regulator (gemfibrozil). This paper also presents the results of an in situ study in which caged Mytilus spp. were deployed at three sites on the Irish coastline over a 1-year period. In water samples, pharmaceutical residues were determined using solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction of pharmaceuticals from mussel tissues used an additional pressurised liquid extraction (PLE) step prior to SPE and LC-MS/MS. Limits of quantification between 15 and 225 ng·L(-1) were achieved in wastewater effluent, between 3 and 38 ng·L(-1) in marine surface water and between 4 and 29 ng·g(-1) dry weight in marine mussels. Method linearity was achieved for pharmaceuticals in each matrix with correlation coefficients of R(2)≥0.976. All five selected pharmaceuticals were quantified in wastewater effluent and marine surface waters. This work has demonstrated the susceptibility of the Mytilus spp. to pharmaceutical exposure following the detection of pharmaceutical residues in the tissues of this mussel species at measurable concentrations.
Analyst | 2009
Leon Barron; Josef Havel; Martha Purcell; Michal T. Szpak; Brian P. Kelleher; Brett Paull
A comprehensive analytical investigation of the sorption behaviour of a large selection of over-the-counter, prescribed pharmaceuticals and illicit drugs to agricultural soils and freeze-dried digested sludges is presented. Batch sorption experiments were carried out to identify which compounds could potentially concentrate in soils as a result of biosolid enrichment. Analysis of aqueous samples was carried out directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). For solids analysis, combined pressurised liquid extraction and solid phase extraction methods were used prior to LC-MS/MS. Solid-water distribution coefficients (K(d)) were calculated based on slopes of sorption isotherms over a defined concentration range. Molecular descriptors such as log P, pK(a), molar refractivity, aromatic ratio, hydrophilic factor and topological surface area were collected for all solutes and, along with generated K(d) data, were incorporated as a training set within a developed artificial neural network to predict K(d) for all solutes within both sample types. Therefore, this work represents a novel approach using combined and cross-validated analytical and computational techniques to confidently study sorption modes within the environment. The logarithm plots of predicted versus experimentally determined K(d) are presented which showed excellent correlation (R(2) > 0.88), highlighting that artificial neural networks could be used as a predictive tool for this application. To evaluate the developed model, it was used to predict K(d) for meclofenamic acid, mefenamic acid, ibuprofen and furosemide and subsequently compared to experimentally determined values in soil. Ratios of experimental/predicted K(d) values were found to be 1.00, 1.00, 1.75 and 1.65, respectively.
Environmental Science & Technology | 2010
Gwen C. Woods; Myrna J. Simpson; Brian P. Kelleher; Margaret McCaul; William L. Kingery; André J. Simpson
The substantial heterogeneity of dissolved organic matter (DOM) inhibits detailed chromatographic analysis with conventional detectors as little structural information can be obtained in the presence of extensive coelution. Here we examine the direct hyphenation of high-performance size exclusion chromatography (HPSEC) with nuclear magnetic resonance (NMR) spectroscopy to determine how size-distinguished fractions differ in composition. The results support the applicability of using HPSEC to generate more homogeneous fractions of DOM prior to NMR analysis and demonstrate that structure is significantly altered with size. The largest fractions are enriched in carbohydrate- and aromatic-type structures. The midsized material is substantial and is representative of carboxyl-rich alicyclic molecules (CRAMs). The smallest material has strong signatures of material derived from linear terpenoids (MDLT). Both CRAMs and MDLT have been recently hypothesized as major components of DOM, and detection by HPSEC-NMR confirms their existence as unique and separable entities. This preliminary work focuses on NMR hyphenation to HPSEC due to widespread use of HPSEC to characterize DOM. Online hyphenation is useful not only for time-efficient analysis of DOM but also for that of other highly complex samples such as those found in many environmental analyses.
Analytical and Bioanalytical Chemistry | 2013
Gillian McEneff; Leon Barron; Brian P. Kelleher; Brett Paull; Brian Quinn
An optimised and validated method for the determination of pharmaceutical residues in blue mussels (Mytilus spp.) is presented herein, as well as an investigation of the effect of cooking (by steaming) on any potential difference in human exposure risk. Selected pharmaceuticals included two non-steroidal anti-inflammatory drugs (diclofenac and mefenamic acid), an antibiotic (trimethoprim), an anti-epileptic (carbamazepine) and a lipid regulator (gemfibrozil). An in vivo exposure experiment was set up in the laboratory in which mussels were exposed either directly by injection (10 ng) or daily through spiked artificial seawater (ASW) over 96 h. In liquid matrices, pharmaceutical residues were either determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS) directly, or in combination with solid-phase extraction (SPE) for analyte concentration purposes. The extraction of pharmaceuticals from mussel tissues used an additional pressurised liquid extraction step prior to SPE and LC-MS/MS. Limits of quantification of between 2 and 46 ng L(-1) were achieved for extracted cooking water and ASW, between 2 and 64 μg L(-1) for ASW in exposure tanks, and between 4 and 29 ng g(-1) for mussel tissue. Method linearities were achieved for pharmaceuticals in each matrix with correlation coefficients of R (2) > 0.975. A selection of exposed mussels was also cooked (via steaming) and analysed using the optimised method to observe any effect on detectable concentrations of parent pharmaceuticals present. An overall increase in pharmaceutical residues in the contaminated mussel tissue and cooking water was observed after cooking.
Analytical and Bioanalytical Chemistry | 2010
Leon Barron; Ekaterina P. Nesterenko; Kris M. Hart; Emma Power; Brian Quinn; Brian P. Kelleher; Brett Paull
AbstractThe use of municipal biosolids as agricultural fertilisers has raised significant concerns in recent years. As part of this, the presence of complex mixtures of pharmaceutical residues and their effects on soil ecosystems remains particularly under-researched. This study focuses on the transfer of a selection of pharmaceutical residues from municipal sewage sludge to agricultural topsoils and their fate therein after an accelerated 6-month rainfall event. Twelve pharmaceuticals encompassing antibiotics, analgesics, anti-inflammatories, beta-blockers, hyperlipidaemics and stimulants were invesigated by employing a combination of extraction techniques and liquid chromatography-tandem mass spectrometry. Both liquid- and solid-phase pharmaceutical contents were analysed and pharmaceutical and personal care products quantified at defined timepoints to elucidate transport behaviour and transformation potential. Results show the distribution and separation of pharmaceuticals over a 100-mm soil depth following typical biosolid enrichment. Using experimentally determined solid–water partition coefficients (Kd) and hydrophobicity distribution ratios (Dow), mobility and modes of interaction under dynamic conditions are discussed. Finally, a brief study into the susceptibility of soil microbes is also presented. To our knowledge, this is the first investigation of pharmaceutical and personal care products release from amended biosolids to soils to include the factors and mechanisms governing their distribution and transformation even over relatively shallow depths. It applies multicompartmental and mass-balanced chemical analyses as well as microbiological approaches for a holistic view of these complex processes. FigureTransport behaviour and fate of pharmaceuticals in biosolid enriched topsoils
Environmental Science: Processes & Impacts | 2015
Sara Sandron; Alfonso Rojas; Richard Wilson; Noel W. Davies; Paul R. Haddad; Robert A. Shellie; Pavel N. Nesterenko; Brian P. Kelleher; Brett Paull
This review presents an overview of the separation techniques applied to the complex challenge of dissolved organic matter characterisation. The review discusses methods for isolation of dissolved organic matter from natural waters, and the range of separation techniques used to further fractionate this complex material. The review covers both liquid and gas chromatographic techniques, in their various modes, and electrophoretic based approaches. For each, the challenges that the separation and fractionation of such an immensely complex sample poses is critically reviewed.
Environmental Chemistry | 2011
Margaret McCaul; David Sutton; André J. Simpson; Adrian Spence; David J. McNally; Brian W. Moran; Alok Goel; Brendan O'Connor; Kris M. Hart; Brian P. Kelleher
Environmental context Freshwater dissolved organic matter is a complex chemical mixture central to many environmental processes, including carbon and nitrogen cycling. Questions remain, however, as to its chemical characteristics, sources and transformation mechanisms. We studied the nature of dissolved organic matter in a lake system and found that it is influenced by anthropogenic activities. Human activities can therefore influence the huge amounts of carbon sequestered in lakes as dissolved organic matter. Abstract Freshwater dissolved organic matter (DOM) is a complex mixture of chemical components that are central to many environmental processes, including carbon and nitrogen cycling. However, questions remain as to its chemical characteristics, sources and transformation mechanisms. Here, we employ 1- and 2-D nuclear magnetic resonance (NMR) spectroscopy to investigate the structural components of lacustrine DOM from Ireland, and how it varies within a lake system, as well as to assess potential sources. Major components found, such as carboxyl-rich alicyclic molecules (CRAM) are consistent with those recently identified in marine and freshwater DOM. Lignin-type markers and protein/peptides were identified and vary spatially. Phenylalanine was detected in lake areas influenced by agriculture, whereas it is not detectable where zebra mussels are prominent. The presence of peptidoglycan, lipoproteins, large polymeric carbohydrates and proteinaceous material supports the substantial contribution of material derived from microorganisms. Evidence is provided that peptidoglycan and silicate species may in part originate from soil microbes.
Environmental Science & Technology | 2016
Hussain Masoom; Denis Courtier-Murias; Hashim Farooq; Ronald Soong; Brian P. Kelleher; Chao Zhang; Werner E. Maas; Michael Fey; Rajeev Kumar; Martine Monette; Henry J. Stronks; Myrna J. Simpson; André J. Simpson
Since the isolation of soil organic matter in 1786, tens of thousands of publications have searched for its structure. Nuclear magnetic resonance (NMR) spectroscopy has played a critical role in defining soil organic matter but traditional approaches remove key information such as the distribution of components at the soil-water interface and conformational information. Here a novel form of NMR with capabilities to study all physical phases termed Comprehensive Multiphase NMR, is applied to analyze soil in its natural swollen-state. The key structural components in soil organic matter are identified to be largely composed of macromolecular inputs from degrading biomass. Polar lipid heads and carbohydrates dominate the soil-water interface while lignin and microbes are arranged in a more hydrophobic interior. Lignin domains cannot be penetrated by aqueous solvents even at extreme pH indicating they are the most hydrophobic environment in soil and are ideal for sequestering hydrophobic contaminants. Here, for the first time, a complete range of physical states of a whole soil can be studied. This provides a more detailed understanding of soil organic matter at the molecular level itself key to develop the most efficient soil remediation and agricultural techniques, and better predict carbon sequestration and climate change.
Environmental Science & Technology | 2013
Kris M. Hart; Anna N. Kulakova; Christopher C. R. Allen; Andre J. Simpson; Seth F. Oppenheimer; Hussain Masoom; Denis Courtier-Murias; Ronald Soong; Leonid Kulakov; Paul Flanagan; Brian T. Murphy; Brian P. Kelleher
The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ (13)C ((13)CO₂) to assess the potential CO₂ sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO₂ flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO₂ utilized by microbial biomass. The component of SOM directly associated with CO₂ capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can differentiate between SOM derived through microbial uptake of CO₂ and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.
Astrobiology | 2011
Kris M. Hart; Michal T. Szpak; William C. Mahaney; James M. Dohm; Sean F. Jordan; Andrew R. Frazer; Christopher C. R. Allen; Brian P. Kelleher
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.