Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Ponnaiya is active.

Publication


Featured researches published by Brian Ponnaiya.


Current Molecular Pharmacology | 2011

Radiation Induced Non-Targeted Response: Mechanism and Potential Clinical Implications

Tom K. Hei; Hongning Zhou; Yunfei Chai; Brian Ponnaiya; Vladimir N. Ivanov

Generations of students in radiation biology have been taught that heritable biological effects require direct damage to DNA. Radiation-induced non-targeted/bystander effects represent a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the biological consequences of exposure to low doses of radiation. Although radiation induced bystander effects have been well documented in a variety of biological systems, including 3D human tissue samples and whole organisms, the mechanism is not known. There is recent evidence that the NF-κB-dependent gene expression of interleukin 8, interleukin 6, cyclooxygenase-2, tumor necrosis factor and interleukin 33 in directly irradiated cells produced the cytokines and prostaglandin E2 with autocrine/paracrine functions, which further activated signaling pathways and induced NF-κB-dependent gene expression in bystander cells. The observations that heritable DNA alterations can be propagated to cells many generations after radiation exposure and that bystander cells exhibit genomic instability in ways similar to directly hit cells indicate that the low dose radiation response is a complex interplay of various modulating factors. The potential implication of the non-targeted response in radiation induced secondary cancer is discussed. A better understanding of the mechanism of the non-targeted effects will be invaluable to assess its clinical relevance and ways in which the bystander phenomenon can be manipulated to increase therapeutic gain in radiotherapy.


Cancer Research | 2009

Telomere Dysfunction and DNA-PKcs Deficiency: Characterization and Consequence

Eli S. Williams; Rebekah Klingler; Brian Ponnaiya; Tanja Hardt; Evelin Schröck; Susan P. Lees-Miller; Katheryn Meek; Robert L. Ullrich; Susan M. Bailey

The mechanisms by which cells accurately distinguish between DNA double-strand break (DSB) ends and telomeric DNA ends remain poorly defined. Recent investigations have revealed intriguing interactions between DNA repair and telomeres. We were the first to report a requirement for the nonhomologous end-joining (NHEJ) protein DNA-dependent protein kinase (DNA-PK) in the effective end-capping of mammalian telomeres. Here, we report our continued characterization of uncapped (as opposed to shortened) dysfunctional telomeres in cells deficient for the catalytic subunit of DNA-PK (DNA-PKcs) and shed light on their consequence. We present evidence in support of our model that uncapped telomeres in this repair-deficient background are inappropriately detected and processed as DSBs and thus participate not only in spontaneous telomere-telomere fusion but, importantly, also in ionizing radiation-induced telomere-DSB fusion events. We show that phosphorylation of DNA-PKcs itself (Thr-2609 cluster) is a critical event for proper telomere end-processing and that ligase IV (NHEJ) is required for uncapped telomere fusion. We also find uncapped telomeres in cells from the BALB/c mouse, which harbors two single-nucleotide polymorphisms that result in reduced DNA-PKcs abundance and activity, most markedly in mammary tissue, and are both radiosensitive and susceptible to radiogenic mammary cancer. Our results suggest mechanistic links between uncapped/dysfunctional telomeres in DNA-PKcs-deficient backgrounds, radiation-induced instability, and breast cancer. These studies provide the first direct evidence of genetic susceptibility and environmental insult interactions leading to a unique and ongoing form of genomic instability capable of driving carcinogenesis.


Radiation Research | 2004

Biological responses in known bystander cells relative to known microbeam-irradiated cells

Brian Ponnaiya; Gloria Jenkins-Baker; David J. Brenner; Eric J. Hall; Gerhard Randers-Pehrson; Charles R. Geard

Abstract Ponnaiya, B., Jenkins-Baker, G., Brenner, D. J., Hall, E. J., Randers-Pehrson, G. and Geard, C. R. Biological Responses in Known Bystander Cells Relative to Known Microbeam-Irradiated Cells. Radiat. Res. 162, 426–432 (2004). Normal human fibroblasts in plateau phase (≅95% G1 phase) were stained with the vital nuclear dye Hoechst 33342 (blue fluorescence) or the vital cytoplasmic dye Cell Tracker Orange (orange fluorescence) and plated at a ratio of 1:1. Only the blue-fluorescing nuclei were microbeam-irradiated with a defined number of 90 keV/μm α particles. The orange-fluorescing cells were then “bystanders”, i.e. not themselves hit but adjacent to cells that were. Hit cells showed a fluence-dependent induction of micronuclei as well as delays in progression from G1 to S phase. Known bystander cells also showed enhanced frequencies of micronuclei (intermediate between those seen in irradiated and control cells) and transient cell cycle delays. However, the induction of micronuclei in bystander cells did not appear to be dependent on the fluence of the particles delivered to the neighboring hit cells. These are the first studies in which the bystander effect has been visualized directly rather than inferred. They indicate that the phenomenon has a quantitative basis and imply that the target for radiation effects cannot be considered to be the individual cell.


Nature Genetics | 2007

DNA double-strand breaks are not sufficient to initiate recruitment of TRF2.

Eli S. Williams; Jan Stap; Jeroen Essers; Brian Ponnaiya; Martijn S. Luijsterburg; Przemek M. Krawczyk; Robert L. Ullrich; Jacob A. Aten; Susan M. Bailey

Kelvin Y K Chan1, Vera S F Chan2, Yongxiong Chen2, Shea-Ping Yip3, Chen-Lung S Lin2& Ui-Soon Khoo1 1Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Special Administrative Region, China. 2Division of Surgery, Oncology, Reproduction Biology and Anaesthetics, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK. 3Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China. e-mail: [email protected] or [email protected]


International Journal of Radiation Biology | 2000

Chromosomal instability induced by heavy ion irradiation

Charles L. Limoli; Brian Ponnaiya; James Corcoran; E. Giedzinski; William F. Morgan

Purpose : To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146keV/mum) and gold ions (11 GeV/nucleon, mean LET 1450 keV/mum). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of ~3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. Materials and methods : Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. Results : Dose-response data, with a particular emphasis at low dose (<1.0 Gy), indicate a frequency of ~4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D 0 = 0.87 and 1.1Gy respectively. Conclusions : Based on the present dose-response data, the relative biological e ffectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.PURPOSE To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.


Radiation Research | 2004

Induction of Replication Protein A in Bystander Cells

Adayabalam S. Balajee; Brian Ponnaiya; Rajamanickam Baskar; Charles R. Geard

Abstract Balajee, A. S., Ponnaiya, B., Baskar, R. and Geard, C. R. Induction of Replication Protein A in Bystander Cells. Radiat. Res. 162, 677–686 (2004). The bystander effect is a biological phenomenon whereby cells not directly targeted by DNA-damaging agents elicit a response similar to that of targeted cells. Understanding the mechanisms underlying the bystander effect is important not only for radiation risk assessment but also for evaluation of protocols for radiotherapy of tumors. Identification of DNA repair and signal transduction proteins that are induced specifically in bystander cells may help in deducing the molecular mechanism(s) responsible for this complex phenomenon. With this objective, we have studied the expression of replication protein A (RPA), which is involved in various DNA metabolic activities such as replication, repair and recombination. We analyzed RPA expression by immunofluorescence and Western blot techniques in both γ-irradiated primary human fibroblast cells and bystander cells that were recipients of conditioned growth medium harvested from γ-irradiated cell cultures. A two- to threefold induction of RPA was observed in bystander MRC5 cells treated with conditioned medium collected from γ-irradiated WI38 or MRC5 cells. Lack of induction of RPA in sham-manipulated MRC5 cells treated with irradiated medium alone (without cells) indicates that the signal elicited from the irradiated cells is responsible for induction of RPA in bystander cells. RPA was induced more effectively in bystander cells than in irradiated cells at the earliest time analyzed (30 min), and the RPA level declined to that of sham-treated control cells by 24 h after treatment. In addition to RPA, apurinic/apyrimidinic endonuclease (APE, a key enzyme of the base excision repair pathway) also showed enhanced expression in bystander cells. Our findings suggest that the induction of RPA and APE is due to a combination of DNA strand breaks and oxidized base lesions in the genomic DNA of bystander cells.


PLOS ONE | 2015

High Throughput Measurement of γH2AX DSB Repair Kinetics in a Healthy Human Population

Preety Sharma; Brian Ponnaiya; Maria Taveras; Igor Shuryak; Helen Turner; David J. Brenner

The Columbia University RABiT (Rapid Automated Biodosimetry Tool) quantifies DNA damage using fingerstick volumes of blood. One RABiT protocol quantifies the total γ-H2AX fluorescence per nucleus, a measure of DNA double strand breaks (DSB) by an immunofluorescent assay at a single time point. Using the recently extended RABiT system, that assays the γ-H2AX repair kinetics at multiple time points, the present small scale study followed its kinetics post irradiation at 0.5 h, 2 h, 4 h, 7 h and 24 h in lymphocytes from 94 healthy adults. The lymphocytes were irradiated ex vivo with 4 Gy γ rays using an external Cs-137 source. The effect of age, gender, race, ethnicity, alcohol use on the endogenous and post irradiation total γ-H2AX protein yields at various time points were statistically analyzed. The endogenous γ-H2AX levels were influenced by age, race and alcohol use within Hispanics. In response to radiation, induction of γ-H2AX yields at 0.5 h and peak formation at 2 h were independent of age, gender, ethnicity except for race and alcohol use that delayed the peak to 4 h time point. Despite the shift in the peak observed, the γ-H2AX yields reached close to baseline at 24 h for all groups. Age and race affected the rate of progression of the DSB repair soon after the yields reached maximum. Finally we show a positive correlation between endogenous γ-H2AX levels with radiation induced γ-H2AX yields (RIY) (r=0.257, P=0.02) and a negative correlation with residuals (r=-0.521, P=<0.0001). A positive correlation was also observed between RIY and DNA repair rate (r=0.634, P<0.0001). Our findings suggest age, race, ethnicity and alcohol use influence DSB γ-H2AX repair kinetics as measured by RABiT immunofluorescent assay.


Radiation Research | 2011

Detection of Chromosomal Instability in Bystander Cells after Si490-Ion Irradiation

Brian Ponnaiya; Masao Suzuki; Chirzuru Tsuruoka; Yukio Uchihori; Ying Wei; Tom K. Hei

There is increasing evidence that two of the biological effects associated with low-dose ionizing radiation, genomic instability and bystander responses, may be linked. To verify and validate the link between the two phenomena, the ability of Si490 ions (high-energy particles associated with radiation risk in space) to induce bystander responses and chromosomal instability in human bronchial epithelial (HBEC-3kt) cells was investigated. These studies were conducted at both the population and single cell level in irradiated and nonirradiated bystander cells receiving medium from the irradiated cultures. At the general population level, transfer of medium from silicon-ion (Si490)-irradiated cultures (at doses of 0.073 Gy, 1.2 Gy and 2 Gy) to nonirradiated bystander cells resulted in small increases in the levels of chromosomal aberrations at the first division. Subsequently, single cell clones isolated from irradiated and bystander populations were analyzed for the appearance of de novo chromosome-type aberrations after ∼50 population doublings using mFISH. Both irradiated and bystander clones demonstrated chromosomal instability (as seen by the de novo appearance of translocations and chromosomal fragments), albeit to different degrees, whereas sham-treated controls showed relatively stable chromosomal patterns. The results presented here highlight the importance of nontargeted effects of radiation on chromosomal instability in human epithelial cells and their potential relevance to human health.


PLOS ONE | 2013

207-nm UV Light-A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies.

Manuela Buonanno; Milda Stanislauskas; Brian Ponnaiya; Alan Bigelow; Gerhard Randers-Pehrson; Yanping Xu; Igor Shuryak; Lubomir B. Smilenov; David M. Owens; David J. Brenner

Background UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5–20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. Aims To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. Methods Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. Results While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. Conclusions As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without the associated hazards to skin of conventional germicidal UV lamps.


RSC Advances | 2015

A bead-based microfluidic approach to integrated single-cell gene expression analysis by quantitative RT-PCR

Hao Sun; Tim Olsen; Jing Zhu; Jianguo Tao; Brian Ponnaiya; Sally A. Amundson; David J. Brenner; Qiao Lin

Gene expression analysis at the single-cell level is critical to understanding variations among cells in heterogeneous populations. Microfluidic reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is well suited to gene expression assays of single cells. We present a microfluidic approach that integrates all functional steps for RT-qPCR of a single cell, including isolation and lysis of the cell, as well as purification, reverse transcription and quantitative real-time PCR of messenger RNA in the cell lysate. In this approach, all reactions in the multi-step assay of a single lysed cell can be completed on microbeads, thereby simplifying the design, fabrication and operation of the microfluidic device, as well as facilitating the minimization of sample loss or contamination. In the microfluidic device, a single cell is isolated and lysed; mRNA in the cell lysate is then analyzed by RT-qPCR using primers immobilized on microbeads in a single microchamber whose temperature is controlled in closed loop via an integrated heater and temperature sensor. The utility of the approach was demonstrated by the analysis of the effects of the drug (methyl methanesulfonate, MMS) on the induction of the cyclin-dependent kinase inhibitor 1a (CDKN1A) in single human cancer cells (MCF-7), demonstrating the potential of our approach for efficient, integrated single-cell RT-qPCR for gene expression analysis.

Collaboration


Dive into the Brian Ponnaiya's collaboration.

Top Co-Authors

Avatar

David J. Brenner

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally A. Amundson

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge