Brian R. Green
GE Aviation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian R. Green.
Journal of Turbomachinery-transactions of The Asme | 2005
C. W. Haldeman; Michael G. Dunn; John W. Barter; Brian R. Green; Robert Frederick Bergholz
Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility. The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2-3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional (3D) effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and/or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.
Journal of Turbomachinery-transactions of The Asme | 2005
Brian R. Green; John W. Barter; C. W. Haldeman; Michael G. Dunn
The unsteady aero-dynamics of a single-stage high-pressure turbine blade operating at design corrected conditions has been the subject of a thorough study involving detailed measurements and computations. The experimental configuration consisted of a single-stage high-pressure turbine and the adjacent, downstream, low-pressure turbine nozzle row. All three blade-rows were instrumented at three spanwise locations with flush-mounted, high-frequency response pressure transducers. The rotor was also instrumented with the same transducers on the blade tip and platform and the stationary shroud was instrumented with pressure transducers at specific locations above the rotating blade. Predictions of the time-dependent flow field around the rotor were obtained using MSU-TURBO, a three-dimensional (3D), nonlinear, computational fluid dynamics (CFD) code. Using an isolated blade-row unsteady analysis method, the unsteady surface pressure for the high-pressure turbine rotor due to the upstream high-pressure turbine nozzle was calculated. The predicted unsteady pressure on the rotor surface was compared to the measurements at selected spanwise locations on the blade, in the recessed cavity, and on the shroud. The rig and computational models included a flat and recessed blade tip geometry and were used fbr the comparisons presented in the paper. Comparisons of the measured and predicted static pressure loading on the blade surface show excellent correlation from both a time-average and time-accurate standpoint. This paper concentrates on the tip and shroud comparisons between the experiments and the predictions and these results also show good correlation with the time-resolved data. These data comparisons provide confidence in the CFD modeling and its ability to capture unsteady flow physics on the blade surface, in the flat and recessed tip regions of the blade, and on the stationary shroud.
Journal of Turbomachinery-transactions of The Asme | 2013
Brian R. Green; Randall M. Mathison; Michael G. Dunn
The effect of rotor purge flow on the unsteady aerodynamics of a high-pressure turbine stage operating at design corrected conditions has been investigated, both experimentally and computationally. The experimental configuration consisted of a single-stage high-pressure turbine with a modern film-cooling configuration on the vane airfoil and the inner and outer end wall surfaces. Purge flow was introduced into the cavity located between the high-pressure vane and the high-pressure disk. The high-pressure blades and the downstream low-pressure turbine nozzle row were not cooled. All of the hardware featured an aerodynamic design typical of a commercial high-pressure ratio turbine and the flow path geometry was representative of the actual engine hardware. In addition to instrumentation in the main flow path, the stationary and rotating seals of the purge flow cavity were instrumented with high frequency response flush-mounted pressure transducers and miniature thermocouples in order to measure the flow field parameters above and below the angel wing.Predictions of the time-dependent flow field in the turbine flow path were obtained using FINE/Turbo, a three-dimensional Reynolds-averaged Navier–Stokes computational fluid dynamics CFD code that had the capability to perform both a steady and unsteady analysis. The steady and unsteady flow fields throughout the turbine were predicted using a three blade-row computational model that incorporated the purge flow cavity between the high-pressure vane and disk. The predictions were performed in an effort to mimic the design process with no adjustment of boundary conditions to better match the experimental data. The time-accurate predictions were generated using the harmonic method. Part I of this paper concentrates on the comparison of the time-averaged and time-accurate predictions with measurements in and around the purge flow cavity. The degree of agreement between the measured and predicted parameters is described in detail, providing confidence in the predictions for the flow field analysis that will be provided in Part II.
ASME Turbo Expo 2004: Power for Land, Sea, and Air | 2004
Brian R. Green; John W. Barter; C. W. Haldeman; Michael G. Dunn
The unsteady aero-dynamics of a single-stage high-pressure turbine blade operating at design corrected conditions has been the subject of a thorough study involving detailed measurements and computations. The experimental configuration consisted of a single-stage high-pressure turbine and the adjacent, downstream, low-pressure turbine nozzle row. All three blade-rows were instrumented at three spanwise locations with flush-mounted, high frequency response pressure transducers. The rotor was also instrumented with the same transducers on the blade tip and platform and the stationary shroud was instrumented with pressure transducers at specific locations above the rotating blade. Predictions of the time-dependent flow field around the rotor were obtained using MSU-TURBO, a 3D, non-linear, computational fluid dynamics (CFD) code. Using an isolated blade-row unsteady analysis method, the unsteady surface pressure for the high-pressure turbine rotor due to the upstream high-pressure turbine nozzle was calculated. The predicted unsteady pressure on the rotor surface was compared to the measurements at selected spanwise locations on the blade, in the recessed cavity, and on the shroud. The rig and computational models included a flat and recessed blade tip geometry and were used for the comparisons presented in the paper. Comparisons of the measured and predicted static pressure loading on the blade surface show excellent correlation from both a time-average and time-accurate standpoint. This paper concentrates on the tip and shroud comparisons between the experiments and the predictions and these results also show good correlation with the time-resolved data. These data comparisons provide confidence in the CFD modeling and its ability to capture unsteady flow physics on the blade surface, in the flat and recessed tip regions of the blade, and on the stationary shroud.Copyright
Journal of Turbomachinery-transactions of The Asme | 2013
Brian R. Green; Randall M. Mathison; Michael G. Dunn
The unsteady aerodynamics of a single-stage high-pressure turbine has been the subject of a study involving detailed measurements and computations. Data and predictions for this experiment have been presented previously, but the current study compares predictions obtained using the nonlinear harmonic simulation method to results obtained using a time-marching simulation with phase-lag boundary conditions. The experimental configuration consisted of a single-stage high-pressure turbine (HPT) and the adjacent, downstream, low-pressure turbine nozzle row (LPV) with an aerodynamic design that is typical to that of a commercial high-pressure ratio HPT and LPV. The flow path geometry was equivalent to engine hardware and operated at the proper design-corrected conditions to match cruise conditions. The high-pressure vane and blade were uncooled for these comparisons. All three blade rows are instrumented with flush-mounted, high-frequency response pressure transducers on the airfoil surfaces and the inner and outer flow path surfaces, which include the rotating blade platform and the stationary shroud above the rotating blade. Predictions of the time-dependent flow field for the turbine flow path were obtained using a three-dimensional, Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) code. Using a two blade row computational model of the turbine flow path, the unsteady surface pressure for the high-pressure vane and rotor was calculated using both unsteady methods. The two sets of predictions are then compared to the measurements looking at both time-averaged and time-accurate results, which show good correlation between the two methods and the measurements. This paper concentrates on the similarities and differences between the two unsteady methods, and how the predictions compare with the measurements since the faster harmonic solution could allow turbomachinery designers to incorporate unsteady calculations in the design process without sacrificing accuracy when compared to the phase-lag method.
ASME Turbo Expo 2004: Power for Land, Sea, and Air | 2004
C. W. Haldeman; Michael G. Dunn; John W. Barter; Brian R. Green; Robert Frederick Bergholz
Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF). The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2–3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and/or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.Copyright
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012
Brian R. Green; Randall M. Mathison; Michael G. Dunn
The unsteady aerodynamics of a single-stage high-pressure turbine has been the subject of a study involving detailed measurements and computations. Data and predictions for this experiment have been presented previously, but the current study compares predictions obtained using the nonlinear harmonic simulation method to results obtained using a time-marching simulation with phase-lag boundary conditions.The experimental configuration consisted of a single-stage high-pressure turbine (HPT) and the adjacent, downstream, low-pressure turbine nozzle row (LPV) with an aerodynamic design that is typical to that of a commercial high-pressure ratio HPT and LPV. The flow path geometry was equivalent to engine hardware, and operated at the proper design-corrected conditions to match cruise conditions. The high-pressure vane and blade were un-cooled for these comparisons. All three blade-rows are instrumented with flush-mounted, high frequency response pressure transducers on the airfoil surfaces, and the inner and outer flow path surfaces, which include the rotating blade platform and the stationary shroud above the rotating blade.Predictions of the time-dependent flow field for the turbine flow path were obtained using a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code. Using a two blade row computational model of the turbine flow path, the unsteady surface pressure for the high-pressure vane and rotor was calculated using both unsteady methods.The two sets of predictions are then compared to the measurements looking at both time-averaged and time-accurate results, which show good correlation between the two methods and the measurements. This paper concentrates on the similarities and differences between the two unsteady methods, and how the predictions compare with the measurements since the faster harmonic solution could allow turbomachinery designers to incorporate unsteady calculations in the design process without sacrificing accuracy when compared to the phase-lag method.Copyright
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012
Brian R. Green; Randall M. Mathison; Michael G. Dunn
The effect of rotor purge flow on the unsteady aerodynamics of a high-pressure turbine stage operating at design corrected conditions has been investigated both experimentally and computationally. The experimental configuration consisted of a single-stage high-pressure turbine with a modern film-cooling configuration on the vane airfoil as well as the inner and outer end-wall surfaces. Purge flow was introduced into the cavity located between the high-pressure vane and the high-pressure disk. The high-pressure blades and the downstream low-pressure turbine nozzle row were not cooled. All hardware featured an aerodynamic design typical of a commercial high-pressure ratio turbine, and the flow path geometry was representative of the actual engine hardware. In addition to instrumentation in the main flow path, the stationary and rotating seals of the purge flow cavity were instrumented with high frequency response, flush-mounted pressure transducers and miniature thermocouples to measure flow field parameters above and below the angel wing.Predictions of the time-dependent flow field in the turbine flow path were obtained using FINE/Turbo, a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code that had the capability to perform both steady and unsteady analysis. The steady and unsteady flow fields throughout the turbine were predicted using a three blade-row computational model that incorporated the purge flow cavity between the high-pressure vane and disk. The predictions were performed in an effort to mimic the design process with no adjustment of boundary conditions to better match the experimental data. The time-accurate predictions were generated using the harmonic method. Part I of this paper concentrates on the comparison of the time-averaged and time-accurate predictions with measurements in and around the purge flow cavity. The degree of agreement between the measured and predicted parameters is described in detail, providing confidence in the predictions for flow field analysis that will be provided in Part II.Copyright
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012
Brian R. Green; Randall M. Mathison; Michael G. Dunn
The detailed mechanisms of purge flow interaction with the hot-gas flow path were investigated using both unsteady CFD and measurements for a turbine operating at design corrected conditions. This turbine consisted of a single-stage high-pressure turbine and the downstream, low-pressure turbine nozzle row with an aerodynamic design equivalent to actual engine hardware and typical of a commercial, high-pressure ratio, transonic turbine. The high-pressure vane airfoils and inner and outer endwalls incorporated state-of-the-art film cooling, and purge flow was introduced into the cavity located between the high-pressure vane and disk. The flow field above and below the blade angel wing was characterized by both temperature and pressure measurements. Predictions of the time-dependent flow field were obtained using a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code and a computational model incorporating the three blade rows and the purge flow cavity. The predictions were performed to evaluate the accuracy obtained by a design style application of the code, and no adjustment of boundary conditions was made to better match the experimental data.Part I of this paper compared the predictions to the measurements in and around the purge flow cavity and demonstrated good correlation. Part II of this paper concentrates on the analytical results, looking at the primary gas path ingestion mechanism into the cavity as well as the effects of the rotor purge on the upstream vane and downstream rotor aerodynamics and thermodynamics. Ingestion into the cavity is driven by high static pressure regions downstream of the vane, high-velocity flow coming off the pressure side of the vane, and the blade bow waves. The introduction of the purge flow is seen to have an effect on the static pressure of the vane trailing edge in the lower 5% of span. In addition, the purge flow is weak enough that upon exiting the cavity, it is swept into the mainstream flow and provides no additional cooling benefits on the platform of the rotating blade.© 2012 ASME
ASME Turbo Expo 2004: Power for Land, Sea, and Air | 2004
C. W. Haldeman; Michael G. Dunn; John W. Barter; Brian R. Green; Robert Frederick Bergholz
Aerodynamic and heat-transfer measurements were acquired using a modern stage and 1/2 high-pressure turbine operating at design corrected conditions and pressure ratio. These measurements were performed using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF). The research program utilized an uncooled turbine stage for which all three airfoils are heavily instrumented at multiple spans to develop a full database at different Reynolds numbers for code validation and flow-physics modeling. The pressure data, once normalized by the inlet conditions, was insensitive to the Reynolds number. The heat-flux data for the high-pressure stage suggests turbulent flow over most of the operating conditions and is Reynolds number sensitive. However, the heat-flux data does not scale according to flat plat theory for most of the airfoil surfaces. Several different predictions have been done using a variety of design and research codes. In this work, comparisons are made between industrial codes and an older code called UNSFLO-2D initially published in the late 1980’s. The comparisons show that the UNSFLO-2D results at midspan are comparable to the modern codes for the time-resolved and time-averaged pressure data, which is remarkable given the vast differences in the processing required. UNSFLO-2D models the entropy generated around the airfoil surfaces using the full Navier-Stokes equations, but propagates the entropy invisicidly downstream to the next blade row, dramatically reducing the computational power required. The accuracy of UNSFLO-2D suggests that this type of approach may be far more useful in creating time-accurate design tools, than trying to utilize full time-accurate Navier-stokes codes which are often currently used as research codes in the engine community, but have yet to be fully integrated into the design system due to their complexity and significant processor requirements.Copyright