Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian R. McMinn is active.

Publication


Featured researches published by Brian R. McMinn.


Applied and Environmental Microbiology | 2013

Development and Evaluation of EPA Method 1615 for Detection of Enterovirus and Norovirus in Water

Jennifer L. Cashdollar; Nichole E. Brinkman; Shannon M. Griffin; Brian R. McMinn; Eric R. Rhodes; Eunice A. Varughese; Ann C. Grimm; Sandhya U. Parshionikar; Larry Wymer; G. Shay Fout

ABSTRACT The U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996. In an effort to improve upon this method, the U.S. EPA recently developed Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Method 1615 uses a culturable virus assay with reduced equipment and labor costs compared to the costs associated with the ICR virus method and introduces a new molecular assay for the detection of enteroviruses and noroviruses by reverse transcription-quantitative PCR. In this study, we describe the optimization of several new components of the molecular assay and examine virus recovery from ground, reagent-grade, and surface water samples seeded with poliovirus type 3 and murine norovirus. For the culturable virus and molecular assays, mean poliovirus recovery using the complete method was 58% and 20% in groundwater samples, 122% and 39% using low-titer spikes in reagent-grade water, 42% and 48% using high-titer spikes in reagent-grade water, and 11% and 10% in surface water with high turbidity, respectively. Murine norovirus recovery by the molecular assay was 30% in groundwater samples, less than 8% in both low- and high-titer spikes in reagent-grade water, and 6% in surface water with high turbidity. This study demonstrates the effectiveness of Method 1615 for use with groundwater samples and highlights the need for further research into its effectiveness with surface water.


Applied and Environmental Microbiology | 2013

Differential Decay of Enterococci and Escherichia coli Originating from Two Fecal Pollution Sources

Asja Korajkic; Brian R. McMinn; Valerie J. Harwood; Orin C. Shanks; G. Shay Fout; Nicholas J. Ashbolt

ABSTRACT Using in situ subtropical aquatic mesocosms, fecal source (cattle manure versus sewage) was shown to be the most important contributor to differential loss in viability of fecal indicator bacteria (FIB), specifically enterococci in freshwater and Escherichia coli in marine habitats. In this study, sunlight exposure and indigenous aquatic microbiota were also important contributors, whose effects on FIB also differed between water types.


Applied and Environmental Microbiology | 2014

Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the upper Mississippi river.

Asja Korajkic; Brian R. McMinn; Orin C. Shanks; Mano Sivaganesan; G. Shay Fout; Nicholas J. Ashbolt

ABSTRACT The sanitary quality of recreational waters that may be impacted by sewage is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); these organisms are found in the gastrointestinal tracts of humans and many other animals, and hence their presence provides no information about the pollution source. Microbial source tracking (MST) methods can discriminate between different pollution sources, providing critical information to water quality managers, but relatively little is known about factors influencing the decay of FIB and MST genetic markers following release into aquatic environments. An in situ mesocosm was deployed at a temperate recreational beach in the Mississippi River to evaluate the effects of ambient sunlight and biotic interactions (predation, competition, and viral lysis) on the decay of culture-based FIB, as well as molecularly based FIB (Entero1a and GenBac3) and human-associated MST genetic markers (HF183 and HumM2) measured by quantitative real-time PCR (qPCR). In general, culturable FIB decayed the fastest, while molecularly based FIB and human-associated genetic markers decayed more slowly. There was a strong correlation between the decay of molecularly based FIB and that of human-associated genetic markers (r 2, 0.96 to 0.98; P < 0.0001) but not between culturable FIB and any qPCR measurement. Overall, exposure to ambient sunlight may be an important factor in the early-stage decay dynamics but generally was not after continued exposure (i.e., after 120 h), when biotic interactions tended to be the only/major influential determinant of persistence.


Journal of Virological Methods | 2012

Evaluation of the celite secondary concentration procedure and an alternate elution buffer for the recovery of enteric adenoviruses 40 and 41.

Brian R. McMinn; Jennifer L. Cashdollar; Ann C. Grimm; G. Shay Fout

The effective recovery of adenovirus from water is a critical first step in developing a virus occurrence method able to provide accurate data for risk assessments and other applications. During virus concentration, electropositive filters are typically eluted with beef extract, undergo secondary concentration using either an organic flocculation or polyethylene glycol (PEG) precipitation technique and are ultimately resuspended in sodium phosphate buffer. In this study, an alternative secondary concentration procedure using celite was optimized by identifying the optimal celite and elution buffer to use. Two elution buffers, sodium phosphate and 1× PBS, were evaluated for their impact on real-time PCR. Sodium phosphate produced high levels of PCR inhibition compared to 1× PBS and so 1× PBS was used in subsequent experiments. The two secondary concentration techniques that were tested with adenovirus 40 and 41 gave recoveries of 69% and 65% for the optimized celite method and 75% and 109% for the organic flocculation method, respectively. Fine particle, calcinated celites in combination with 1× PBS elution buffer were shown to be effective at concentrating adenovirus 40 and 41 during secondary concentration and their subsequent detection using PCR. Heat extraction efficiencies were compared to samples processed using a DNA extraction kit to address possible virus aggregation issues. Samples processed through DNA extraction were found to produce realistic adenovirus recoveries compared to exaggerated recoveries using heat extraction.


Letters in Applied Microbiology | 2014

Evaluation of Bacteroides fragilis GB-124 bacteriophages as novel human-associated faecal indicators in the United States

Brian R. McMinn; Asja Korajkic; Nicholas J. Ashbolt

Phages infecting human‐associated Bacteroides fragilis (GB‐124 phages) have been employed in the European Union (EU) to identify human faecal pollution, but their utility for the United States was unclear. Primary sewage samples were collected seasonally from seven wastewater treatment plants (WWTP) across the continental United States, and more time‐intensive sampling was conducted at local WWTPs. All samples were assayed for plaque‐forming units (PFU) of GB‐124 phages, somatic and FRNA‐specific coliphages, as well as adenoviruses (by quantitative PCR [qPCR]). Animal faecal samples (>250) from 14 different species were tested for the presence of the three phage groups. GB‐124 phages were consistently detected in sewage (10–102 PFU ml−1), but not in animal faeces. While density estimates of both coliphages in sewage were approximately one order of magnitude higher than GB‐124 phages, they were both randomly detected in animal faecal samples (102–105 g−1 dry weight). Stability of all three phages was inversely proportional to temperature; persistence was greatest at 5°C compared to 20 and 35°C, where no phages were detectable after a week. In summary, GB‐124 phages appear to be a feasible alternative indicator organism and benefit from being sewage associated, while providing an inexpensive detection technique for infectious virions.


Journal of Virological Methods | 2013

Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.

Brian R. McMinn

Currently, the U.S. Environmental Protection Agencys Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter, but a more cost effective option, the NanoCeram® filter, has been shown to recover comparable levels of enterovirus and norovirus from both matrices. In order to achieve the highest viral recoveries, filtration methods require the identification of optimal concentration conditions that are unique for each virus type. This study evaluated the effectiveness of 1MDS and NanoCeram filters in recovering adenovirus (AdV) 40 and 41 from tap water, and optimized two secondary concentration procedures the celite and organic flocculation method. Adjustments in pH were made to both virus elution solutions and sample matrices to determine which resulted in higher virus recovery. Samples were analyzed by quantitative PCR (qPCR) and Most Probable Number (MPN) techniques and AdV recoveries were determined by comparing levels of virus in sample concentrates to that in the initial input. The recovery of adenovirus was highest for samples in unconditioned tap water (pH 8) using the 1MDS filter and celite for secondary concentration. Elution buffer containing 0.1% sodium polyphosphate at pH 10.0 was determined to be most effective overall for both AdV types. Under these conditions, the average recovery for AdV40 and 41 was 49% and 60%, respectively. By optimizing secondary elution steps, AdV recovery from tap water could be improved at least two-fold compared to the currently used methodology. Identification of the optimal concentration conditions for human AdV (HAdV) is important for timely and sensitive detection of these viruses from both surface and drinking waters.


Letters in Applied Microbiology | 2017

Bacteriophages as indicators of faecal pollution and enteric virus removal

Brian R. McMinn; Nicholas J. Ashbolt; Asja Korajkic

Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants.


Journal of Virological Methods | 2017

Concentration and quantification of somatic and F+ coliphages from recreational waters

Brian R. McMinn; Emma M. Huff; Eric R. Rhodes; Asja Korajkic

Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (D- HFUF) and single agar layer (SAL) procedure to concentrate and enumerate coliphages from 1L and 10L volumes of ambient surface waters (lake, river, marine), river water with varying turbidities (3.74-118.7 NTU), and a simulated combined sewer overflow (CSO) event. Percentage recoveries for surface waters were 40-79% (somatic) and 35-94% (F+). The method performed equally well in all three matrices at 1L volumes, but percent recoveries were significantly higher in marine waters at 10L volumes when compared to freshwater. Percent recoveries at 1L and 10L were similar, except in river water where recoveries were significantly lower at higher volume. In highly turbid waters, D-HFUF-SAL had a recovery range of 25-77% (somatic) and 21-80% (F+). The method produced detectable levels of coliphages in diluted wastewater and in unspiked surface waters, emphasizing its applicability to CSO events and highlighting its utility in recovery of low coliphage densities from surface waters. Thus D-HFUF-SAL is a good candidate method for routine water quality monitoring of coliphages.


Journal of Visualized Experiments | 2015

A small volume procedure for viral concentration from water.

Brian R. McMinn; Asja Korajkic

Small-scale concentration of viruses (sample volumes 1-10 L, here simulated with spiked 100 ml water samples) is an efficient, cost-effective way to identify optimal parameters for virus concentration. Viruses can be concentrated from water using filtration (electropositive, electronegative, glass wool or size exclusion), followed by secondary concentration with beef extract to release viruses from filter surfaces, and finally tertiary concentration resulting in a 5-30 ml volume virus concentrate. In order to identify optimal concentration procedures, two different electropositive filters were evaluated (a glass/cellulose filter [1MDS] and a nano-alumina/glass filter [NanoCeram]), as well as different secondary concentration techniques; the celite technique where three different celite particle sizes were evaluated (fine, medium and large) followed by comparing this technique with that of the established organic flocculation method. Various elution additives were also evaluated for their ability to enhance the release of adenovirus (AdV) particles from filter surfaces. Fine particle celite recovered similar levels of AdV40 and 41 to that of the established organic flocculation method when viral spikes were added during secondary concentration. The glass/cellulose filter recovered higher levels of both, AdV40 and 41, compared to that of a nano-alumina/glass fiber filter. Although not statistically significant, the addition of 0.1% sodium polyphosphate amended beef extract eluant recovered 10% more AdV particles compared to unamended beef extract.


Science of The Total Environment | 2019

Extended persistence of general and cattle-associated fecal indicators in marine and freshwater environment

Asja Korajkic; Brian R. McMinn; Nicholas J. Ashbolt; Mano Sivaganesan; Valerie J. Harwood; Orin C. Shanks

Fecal contamination of recreational waters with cattle manure can pose a risk to public health due to the potential presence of various zoonotic pathogens. Fecal indicator bacteria (FIB) have a long history of use in the assessment of recreational water quality, but FIB quantification provides no information about pollution sources. Microbial source tracking (MST) markers have been developed in response to a need to identify pollution sources, yet factors that influence their decay in ambient waters are often poorly understood. We investigated the influence of water type (freshwater versus marine) and select environmental parameters (indigenous microbiota, ambient sunlight) on the decay of FIB and MST markers originating from cattle manure. Experiments were conducted in situ using a submersible aquatic mesocosm containing dialysis bags filled with a mixture of cattle manure and ambient water. Culturable FIB (E. coli, enterococci) were enumerated by membrane filtration and general fecal indicator bacteria (GenBac3, Entero1a, EC23S857) and MST markers (Rum2Bac, CowM2, CowM3) were estimated by qPCR. Water type was the most significant factor influencing decay (three-way ANOVA, p: 0.006 to <0.001), although the magnitude of the effect differed among microbial targets and over time. The presence of indigenous microbiota and exposure to sunlight were significantly correlated (three-way ANOVA, p: 0.044 to <0.001) with decay of enterococci and CowM2, while E. coli, EC23S857, Rum2Bac, and CowM3 (three-way ANOVA, p: 0.044 < 0.001) were significantly impacted by sunlight or indigenous microbiota. Results indicate extended persistence of both cultivated FIB and genetic markers in marine and freshwater water types. Findings suggest that multiple environmental stressors are important determinants of FIB and MST marker persistence, but their magnitude can vary across indicators. Selective exclusion of natural aquatic microbiota and/or sunlight typically resulted in extended survival, but the effect was minor and limited to select microbial targets.

Collaboration


Dive into the Brian R. McMinn's collaboration.

Top Co-Authors

Avatar

Asja Korajkic

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Orin C. Shanks

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

G. Shay Fout

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric R. Rhodes

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Ann C. Grimm

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Mano Sivaganesan

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Cashdollar

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Pauline Wanjugi

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Valerie J. Harwood

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge