Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian R. Moore is active.

Publication


Featured researches published by Brian R. Moore.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures

Brian R. Moore; Sebastian Höhna; Michael R. May; Bruce Rannala; John P. Huelsenbeck

Significance We show that Bayesian analysis of macroevolutionary mixtures (BAMM)—a method for identifying lineage-specific diversification rates—is flawed. Exposing the problems with BAMM is important both to empiricists (to avoid making unreliable inferences using this method) and to theoreticians (to focus their efforts on solving the problems that we identify). Bayesian analysis of macroevolutionary mixtures (BAMM) has recently taken the study of lineage diversification by storm. BAMM estimates the diversification-rate parameters (speciation and extinction) for every branch of a study phylogeny and infers the number and location of diversification-rate shifts across branches of a tree. Our evaluation of BAMM reveals two major theoretical errors: (i) the likelihood function (which estimates the model parameters from the data) is incorrect, and (ii) the compound Poisson process prior model (which describes the prior distribution of diversification-rate shifts across branches) is incoherent. Using simulation, we demonstrate that these theoretical issues cause statistical pathologies; posterior estimates of the number of diversification-rate shifts are strongly influenced by the assumed prior, and estimates of diversification-rate parameters are unreliable. Moreover, the inability to correctly compute the likelihood or to correctly specify the prior for rate-variable trees precludes the use of Bayesian approaches for testing hypotheses regarding the number and location of diversification-rate shifts using BAMM.


Systematic Biology | 2016

RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language

Sebastian Höhna; Michael J. Landis; Tracy A. Heath; Bastien Boussau; Nicolas Lartillot; Brian R. Moore; John P. Huelsenbeck; Fredrik Ronquist

Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com. [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.]


Proceedings of the National Academy of Sciences of the United States of America | 2014

A critical appraisal of the use of microRNA data in phylogenetics

Robert Thomson; David C. Plachetzki; D. Luke Mahler; Brian R. Moore

Significance As progress toward a highly resolved tree of life continues, evolutionary relationships that defy resolution continue to be identified. Recently, the presence/absence of microRNA families has emerged as a potentially ideal source of information to resolve these difficult phylogenetic problems, and these data have been used to address several long-standing problems in the metazoan phylogeny. To our knowledge, this study performs the first rigorous statistical assessment of the phylogenetic utility of microRNAs and finds that a high incidence of homoplasy and sampling error renders published phylogenies based on microRNA data highly biased or uncertain. This study casts serious doubt on the central phylogenetic conclusions of several previous analyses of microRNA datasets. Recent progress in resolving the tree of life continues to expose relationships that resist resolution, which drives the search for novel sources of information to solve these difficult phylogenetic problems. A recent example, the presence and absence of microRNA families, has been vigorously promoted as an ideal source of phylogenetic data and has been applied to several perennial phylogenetic problems. The utility of such data for phylogenetic inference hinges critically both on developing stochastic models that provide a reasonable description of the process that give rise to these data, and also on the careful validation of those models in real inference scenarios. Remarkably, however, the statistical behavior and phylogenetic utility of microRNA data have not yet been rigorously characterized. Here we explore the behavior and performance of microRNA presence/absence data under a variety of evolutionary models and reexamine datasets from several previous studies. We find that highly heterogeneous rates of microRNA gain and loss, pervasive secondary loss, and sampling error collectively render microRNA-based inference of phylogeny difficult. Moreover, our reanalyses fundamentally alter the conclusions for four of the five studies that we reexamined. Our results indicate that the capacity of miRNA data to resolve the tree of life has been overstated, and we urge caution in their application and interpretation.


Bioinformatics | 2016

TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates

Sebastian Höhna; Michael R. May; Brian R. Moore

UNLABELLED Many fundamental questions in evolutionary biology entail estimating rates of lineage diversification (speciation-extinction) that are modeled using birth-death branching processes. We leverage recent advances in branching-process theory to develop a flexible Bayesian framework for specifying diversification models-where rates are constant, vary continuously, or change episodically through time-and implement numerical methods to estimate parameters of these models from molecular phylogenies, even when species sampling is incomplete. We enable both statistical inference and efficient simulation under these models. We also provide robust methods for comparing the relative and absolute fit of competing branching-process models to a given tree, thereby providing rigorous tests of biological hypotheses regarding patterns and processes of lineage diversification. AVAILABILITY AND IMPLEMENTATION The source code for TESS is freely available at http://cran.r-project.org/web/packages/TESS/ CONTACT: [email protected].


PLOS ONE | 2014

The dawn of open access to phylogenetic data.

Andrew F. Magee; Michael R. May; Brian R. Moore

The scientific enterprise depends critically on the preservation of and open access to published data. This basic tenet applies acutely to phylogenies (estimates of evolutionary relationships among species). Increasingly, phylogenies are estimated from increasingly large, genome-scale datasets using increasingly complex statistical methods that require increasing levels of expertise and computational investment. Moreover, the resulting phylogenetic data provide an explicit historical perspective that critically informs research in a vast and growing number of scientific disciplines. One such use is the study of changes in rates of lineage diversification (speciation – extinction) through time. As part of a meta-analysis in this area, we sought to collect phylogenetic data (comprising nucleotide sequence alignment and tree files) from 217 studies published in 46 journals over a 13-year period. We document our attempts to procure those data (from online archives and by direct request to corresponding authors), and report results of analyses (using Bayesian logistic regression) to assess the impact of various factors on the success of our efforts. Overall, complete phylogenetic data for of these studies are effectively lost to science. Our study indicates that phylogenetic data are more likely to be deposited in online archives and/or shared upon request when: (1) the publishing journal has a strong data-sharing policy; (2) the publishing journal has a higher impact factor, and; (3) the data are requested from faculty rather than students. Importantly, our survey spans recent policy initiatives and infrastructural changes; our analyses indicate that the positive impact of these community initiatives has been both dramatic and immediate. Although the results of our study indicate that the situation is dire, our findings also reveal tremendous recent progress in the sharing and preservation of phylogenetic data.


Methods in Ecology and Evolution | 2016

A Bayesian approach for detecting the impact of mass‐extinction events on molecular phylogenies when rates of lineage diversification may vary

Michael R. May; Sebastian Höhna; Brian R. Moore

The paleontological record chronicles numerous episodes of mass extinction that severely culled the Tree of Life. Biologists have long sought to assess the extent to which these events may have imp ...


Systematic Biology | 2016

How Well Can We Detect Lineage-Specific Diversification-Rate Shifts? A Simulation Study of Sequential AIC Methods.

Michael R. May; Brian R. Moore

Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified ≈30% of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers—in order to clarify whether these methods can make reliable inferences from empirical datasets—and to theoretical biologists—in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.]


Viruses | 2015

Phylodynamics of H5N1 Highly Pathogenic Avian Influenza in Europe, 2005-2010: Potential for Molecular Surveillance of New Outbreaks

Mohammad Alkhamis; Brian R. Moore; Andres M. Perez

Previous Bayesian phylogeographic studies of H5N1 highly pathogenic avian influenza viruses (HPAIVs) explored the origin and spread of the epidemic from China into Russia, indicating that HPAIV circulated in Russia prior to its detection there in 2005. In this study, we extend this research to explore the evolution and spread of HPAIV within Europe during the 2005–2010 epidemic, using all available sequences of the hemagglutinin (HA) and neuraminidase (NA) gene regions that were collected in Europe and Russia during the outbreak. We use discrete-trait phylodynamic models within a Bayesian statistical framework to explore the evolution of HPAIV. Our results indicate that the genetic diversity and effective population size of HPAIV peaked between mid-2005 and early 2006, followed by drastic decline in 2007, which coincides with the end of the epidemic in Europe. Our results also suggest that domestic birds were the most likely source of the spread of the virus from Russia into Europe. Additionally, estimates of viral dispersal routes indicate that Russia, Romania, and Germany were key epicenters of these outbreaks. Our study quantifies the dynamics of a major European HPAIV pandemic and substantiates the ability of phylodynamic models to improve molecular surveillance of novel AIVs.


bioRxiv | 2015

A Bayesian Approach for Detecting Mass-Extinction Events When Rates of Lineage Diversification Vary

Michael R. May; Sebastian Höhna; Brian R. Moore

The paleontological record chronicles numerous episodes of mass extinction that severely culled the Tree of Life. Biologists have long sought to assess the extent to which these events may have impacted particular groups. We present a novel method for detecting mass-extinction events from phylogenies estimated from molecular sequence data. We develop our approach in a Bayesian statistical framework, which enables us to harness prior information on the frequency and magnitude of mass-extinction events. The approach is based on an episodic stochastic-branching process model in which rates of speciation and extinction are constant between rate-shift events. We model three types of events: (1) instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide shifts in extinction rate, and; (3) instantaneous tree-wide mass-extinction events. Each of the events is described by a separate compound Poisson process (CPP) model, where the waiting times between each event are exponentially distributed with event-specific rate parameters. The magnitude of each event is drawn from an event-type specific prior distribution. Parameters of the model are then estimated using a reversible-jump Markov chain Monte Carlo (rjMCMC) algorithm. We demonstrate via simulation that this method has substantial power to detect the number of mass-extinction events, provides unbiased estimates of the timing of mass-extinction events, while exhibiting an appropriate (i.e., below 5%) false discovery rate even in the case of background diversification rate variation. Finally, we provide an empirical application of this approach to conifers, which reveals that this group has experienced two major episodes of mass extinction. This new approach—the CPP on Mass Extinction Times (CoMET) model—provides an effective tool for identifying mass-extinction events from molecular phylogenies, even when the history of those groups includes more prosaic temporal variation in diversification rate.


bioRxiv | 2014

How Well Can We Detect Shifts in Rates of Lineage Diversification? A Simulation Study of Sequential AIC Methods

Michael R. May; Brian R. Moore

Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical phylogenetic methods for detecting shifts in the rate of lineage diversification (speciation – extinction). One of the most frequently used methods—implemented in the program MEDUSA—explores a set of diversification-rate models, where each model uniquely assigns branches of the phylogeny to a set of one or more diversification-rate categories. Each candidate model is first fit to the data, and the Akaike Information Criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is completely unknown, which is a concern in light of the poor performance of the AIC as a means of choosing among models in other phylogenetic comparative contexts, and also because of the ad hoc algorithm used to visit models. Here, we perform an extensive simulation study demonstrating that, as implemented, MEDUSA (1) has an extremely high Type I error rate (on average, spurious diversification-rate shifts are identified 42% of the time), and (2) provides severely biased parameter estimates (on average, estimated net-diversification and relative-extinction rates are 183% and 20% of their true values, respectively). We performed simulation experiments to reveal the source(s) of these pathologies, which include (1) the use of incorrect critical thresholds for model selection, and (2) errors in the likelihood function. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers—in order to clarify whether these methods can reliably be applied to empirical datasets—and to theoretical biologists—in order to clarify whether new methods are required, and to reveal the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification.

Collaboration


Dive into the Brian R. Moore's collaboration.

Top Co-Authors

Avatar

Michael R. May

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fredrik Ronquist

Swedish Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandon S. Cooper

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge