Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian R. Weil is active.

Publication


Featured researches published by Brian R. Weil.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Enhanced endothelin-1 system activity with overweight and obesity

Brian R. Weil; Christian M. Westby; Gary P. Van Guilder; Jared J. Greiner; Brian L. Stauffer; Christopher A. DeSouza

Endothelin (ET)-1-mediated vasoconstrictor tone contributes to the development and progression of several adiposity-related conditions, including hypertension and atherosclerotic vascular disease. The aims of the present study were to determine 1) whether endogenous ET-1 vasoconstrictor activity is elevated in overweight and obese adults, and, if so, 2) whether increased ET-1-mediated vasoconstriction contributes to the adiposity-related impairment in endothelium-dependent vasodilation. Seventy-nine adults were studied: 34 normal weight [body mass index (BMI) < 25 kg/m(2)], 22 overweight (BMI ≥ 25 and < 30 kg/m(2)), and 23 obese (BMI ≥ 30 kg/m(2)). Forearm blood flow (FBF) responses to intra-arterial infusion of ET-1 (5 pmol/min for 20 min) and selective ET-1 receptor blockade (BQ-123, 100 nmol/min for 60 min) were determined. In a subset of the study population, FBF responses to ACh (4.0, 8.0, and 16.0 μg·100 ml tissue(-1)·min(-1)) were measured in the absence and presence of selective ET-1 receptor blockade. The vasoconstrictor response to ET-1 was significantly blunted in overweight and obese adults (∼ 70%) compared with normal weight adults. Selective ET-1 receptor blockade elicited a significant vasodilator response (∼ 20%) in overweight and obese adults but did not alter FBF in normal weight adults. Coinfusion of BQ-123 did not affect FBF responses to ACh in normal weight adults but resulted in an ∼ 20% increase (P < 0.05) in ACh-induced vasodilation in overweight and obese adults. These results demonstrate that overweight and obesity are associated with enhanced ET-1-mediated vasoconstriction that contributes to endothelial vasodilator dysfunction and may play a role in the increased prevalence of hypertension with increased adiposity.


Archive | 2013

Coronary Blood Flow and Myocardial Ischemia

Brian R. Weil; John M. Canty

This chapter reviews coronary flow regulation in normal and pathophysiological states. Under normal conditions, the heart maximally extracts oxygen and as a result, increases in oxygen demand are met by proportionate increases in coronary blood flow. Mechanisms responsible for the regulation of coronary resistance in the microcirculation include metabolic, myogenic, and flow-dependent resistance vessel control. There is substantial vasodilator reserve in the normal heart such that, in the presence of an epicardial coronary stenosis, local vasodilation decreases vascular resistance and autoregulates flow at the normal level as coronary pressure falls. As stenosis severity increases, however, flow reserve is exhausted and the subendocardium becomes vulnerable to reversible ischemia during increased myocardial oxygen demands. When ischemia is severe and prolonged following a total coronary occlusion, irreversible myocyte injury develops leading to a wave front of myocardial necrosis that extends from subendocardium to subepicardium. When ischemia is brief (as in angina), myocardial function remains depressed after flow normalizes indicative of myocardial stunning. Repetitive reversible ischemia leads to persistent dysfunction followed by intrinsic adaptive responses characteristic of hibernating myocardium. These protect the heart from irreversible injury and acute stunning at the expense of producing chronically depressed but reversible contractile dysfunction. A thorough understanding of coronary physiology and myocardial ischemia is essential in the management of patients with coronary artery disease.


Journal of Vascular Research | 2011

Aging Is Associated with a Proapoptotic Endothelial Progenitor Cell Phenotype

Erich J. Kushner; Owen J. MacEneaney; Brian R. Weil; Jared J. Greiner; Brian L. Stauffer; Christopher A. DeSouza

The aim of this study was to determine if aging is associated with enhanced endothelial progenitor cell (EPC) sensitivity to apoptosis. Cells with phenotypic EPC characteristics were isolated from healthy, nonobese young (age 25 ± 1 years) and older (61 ± 1 years) men. Intracellular active caspase-3 concentrations in response to staurosporine stimulation were approximately 35% higher (p < 0.05) in EPCs from older (3.15 ± 0.29 pg/ml) compared with young (2.33 ± 0.24 pg/ml) men. Protein expression of Akt, p70 S6-kinase and Bcl-2 was markedly lower (approx. 35, 75 and 60%, respectively, all p < 0.05) in EPCs from older compared with young men, whereas there were no age-related differences in either 14-3-3Ε or Bax expression. Additionally, EPC telomerase activity was 57% lower (p < 0.05) in older (0.18 ± 0.11 AU) versus young (0.43 ± 0.11 AU) men. These results indicate that aging is associated with a proapoptotic EPC phenotype characterized by decreased expression of key antiapoptotic proteins associated with the PI-3-kinase signaling pathway and reduced telomerase activity. These age-related changes likely contribute, in part, to the diminished ability of EPCs to resist an apoptotic stimulus in older men. Increased susceptibility to apoptosis may contribute to the numerical and functional impairments observed in EPCs with aging.


Clinical Science | 2011

Endothelin-1 vasoconstriction and the age-related decline in endothelium-dependent vasodilatation in men.

Christian M. Westby; Brian R. Weil; Jared J. Greiner; Brian L. Stauffer; Christopher A. DeSouza

ET (endothelin)-1, a potent vasoconstrictor peptide released by the endothelium, plays an important role in vasomotor regulation and has been linked to diminished endothelial vasodilator capacity in several pathologies associated with human aging, including hypertension, Type 2 diabetes and coronary artery disease. However, it is currently unknown whether the decline in endothelial vasodilatation with advancing age is due to elevated ET-1 vasoconstrictor activity. Accordingly, we tested the hypothesis that the age-related impairment in ACh (acetylcholine)-mediated endothelium-dependent vasodilatation is due, at least in part, to increased ET-1-mediated vasoconstrictor tone. FBF (forearm blood flow) responses to ACh, SNP (sodium nitroprusside) and BQ-123 (ET(A) receptor blocker) were determined in 14 young (age, 25 ± 1 years) and 14 older (age, 61 ± 2 years) healthy non-obese men. Additionally, FBF responses to ACh were determined in the presence of ETA blockade. Vasodilatation to ACh was lower (approx. 25%; P<0.05) in the older men (from 4.9 ± 0.2 to 13.9 ± 0.9 ml·100 ml(-1) of tissue·min(-1)) compared with the young men (4.6 ± 0.3 to 17.2 ± 1.0 ml·100 ml(-1) of tissue·min(-1)). There were no differences in FBF responses to SNP between the young (4.8 ± 0.3 to 18.5 ± 0.3 ml·100 ml(-1) of tissue·min(-1)) and older (5.1 ± 0.3 to 17.3 ± 0.8 ml·100 ml(-1) of tissue·min(-1)) men. In the young men, resting FBF was not significantly altered by BQ-123, whereas, in the older men, FBF increased approx. 25% in response to BQ-123 infusion (P<0.05). Co-infusion of ACh with BQ-123 resulted in an approx. 20% increase in the ACh-induced vasodilatation in older men compared with saline. In contrast, FBF responses to ACh were not significantly altered by ET(A) blockade in the young men. In conclusion, these results demonstrate that ET-1 vasoconstrictor activity contributes, at least in part, to diminished endothelium-dependent vasodilatation in older men.


Circulation Research | 2015

Comparative Efficacy of Intracoronary Allogeneic Mesenchymal Stem Cells and Cardiosphere-Derived Cells in Swine with Hibernating Myocardium

Brian R. Weil; Gen Suzuki; Merced M Leiker; James A. Fallavollita; John M. Canty

RATIONALE Allogeneic bone marrow-derived mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs) have each entered clinical trials, but a direct comparison of these cell types has not been performed in a large animal model of hibernating myocardium. OBJECTIVE Using completely blinded methodology, we compared the efficacy of global intracoronary allogeneic MSCs (icMSCs, ≈35×10(6)) and CDCs (icCDCs, ≈35×10(6)) versus vehicle in cyclosporine-immunosuppressed swine with a chronic left anterior descending coronary artery stenosis (n=26). METHODS AND RESULTS Studies began 3 months after instrumentation when wall thickening was reduced (left anterior descending coronary artery % wall thickening [mean±SD], 38±11% versus 83±26% in remote; P<0.01) and similar among groups. Four weeks after treatment, left anterior descending coronary artery % wall thickening increased similarly after icCDCs and icMSCs, whereas it remained depressed in vehicle-treated controls (icMSCs, 51±13%; icCDCs, 51±17%; vehicle, 34±3%, treatments P<0.05 versus vehicle). There was no change in myocardial perfusion. Both icMSCs and icCDCs increased left anterior descending coronary artery myocyte nuclear density (icMSCs, 1601±279 nuclei/mm(2); icCDCs, 1569±294 nuclei/mm(2); vehicle, 973±181 nuclei/mm(2); treatments P<0.05 versus vehicle) and reduced myocyte diameter (icMSCs, 16.4±1.5 μm; icCDCs, 16.8±1.2 μm; vehicle, 20.2±3.7 μm; treatments P<0.05 versus vehicle) to the same extent. Similar changes in myocyte nuclear density and diameter were observed in the remote region of cell-treated animals. Cell fate analysis using Y-chromosome fluorescent in situ hybridization demonstrated rare cells from sex-mismatched donors. CONCLUSIONS Allogeneic icMSCs and icCDCs exhibit comparable therapeutic efficacy in a large animal model of hibernating myocardium. Both cell types produced equivalent increases in regional function and stimulated myocyte regeneration in ischemic and remote myocardium. The activation of endogenous myocyte proliferation and regression of myocyte cellular hypertrophy support a common mechanism of cardiac repair.


PLOS ONE | 2014

Global Intracoronary Infusion of Allogeneic Cardiosphere-Derived Cells Improves Ventricular Function and Stimulates Endogenous Myocyte Regeneration throughout the Heart in Swine with Hibernating Myocardium

Gen Suzuki; Brian R. Weil; Merced M Leiker; Amanda Ribbeck; Rebeccah F. Young; Thomas R. Cimato; John M. Canty

Background Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the “stop-flow” technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation. Methods and Results Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼33×106 icCDCs). Global icCDC infusion was safe and while ∼3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23±6 to 51±5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs. Conclusions Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair.


American Journal of Hypertension | 2011

Prehypertension Is Associated With Impaired Nitric Oxide-Mediated Endothelium-Dependent Vasodilation in Sedentary Adults

Brian R. Weil; Brian L. Stauffer; Jared J. Greiner; Christopher A. DeSouza

BACKGROUND Endothelial vasodilator dysfunction contributes to the development of hypertension (blood pressure (BP) ≥ 140/90 mm Hg) and cardiovascular disease (CVD). Prehypertension (BP 120-139/80-89 mm Hg) has recently been identified as an independent risk factor for hypertension and CVD. It is currently unclear whether BP in the prehypertensive range is associated with endothelial vasodilator dysfunction. We tested the hypothesis that BP in the prehypertensive range, independent of other cardiovascular risk factors, is associated with impaired nitric oxide (NO)-mediated endothelium-dependent vasodilation. METHODS Forearm blood flow (FBF) responses to intra-arterial acetylcholine (ACh; 8.0-32.0 µg/100 ml tissue/min) and sodium nitroprusside (SNP; 1.0-4.0 µg/100 ml tissue/min) were measured in 20 normotensive (age: 56 ± 1 years; BP: 110/70 ± 1/2 mm Hg) and 20 prehypertensive (56 ± 2 years; 128/79 ± 2/2 mm Hg) adults. In addition, FBF responses to ACh were determined in the absence and presence of the endothelial NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA) (5 mg/min). RESULTS FBF responses to ACh were significantly lower (~30%) in prehypertensive (from 4.2 ± 0.3 to 11.4 ± 0.7 ml/100 ml tissue/min) compared with normotensive (from 4.6 ± 0.2 to 14.5 ± 0.7 ml/100 ml tissue/min) adults. There were no group differences in FBF responses to SNP. Co-infusion of L-NMMA significantly reduced the FBF response to ACh in the normotensive (~30%; P <0.05) but not the prehypertensive adults. CONCLUSIONS Prehypertension is associated with impaired NO-mediated endothelium-dependent vasodilation. The endothelial vasodilator dysfunction that characterizes hypertension is present at BP levels in the prehypertensive range and may contribute to the increased risk of hypertension and CVD in this population.


JACC: Basic to Translational Science | 2017

Brief Myocardial Ischemia Produces Cardiac Troponin I Release and Focal Myocyte Apoptosis in the Absence of Pathological Infarction in Swine

Brian R. Weil; Rebeccah F. Young; Xiaomeng Shen; Gen Suzuki; Jun Qu; Saurabh Malhotra; John M. Canty

Visual Abstract


Clinical Science | 2013

Stem cell stimulation of endogenous myocyte regeneration

Brian R. Weil; John M. Canty

Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodelling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted over the past decade have shown that a variety of autologous bone-marrow- and peripheral-blood-derived stem and progenitor cell populations can be safely administered to patients with ischaemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the pre-clinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischaemic heart disease patients.


Canadian Journal of Cardiology | 2012

Elevated Endothelin-1 Vasoconstrictor Tone in Prehypertensive Adults

Brian R. Weil; Christian M. Westby; Jared J. Greiner; Brian L. Stauffer; Christopher A. DeSouza

BACKGROUND Prehypertension (blood pressure [BP] 120-139/80-89 mm Hg) is an independent risk factor for hypertension and cardiovascular disease. Currently, it is unknown whether endothelin (ET)-1-mediated vasoconstrictor tone is elevated with BP in the prehypertensive range. The aims of this study were to determine whether ET-1 vasoconstrictor tone is elevated in prehypertensive adults and, if so, whether ET-1-mediated vasoconstriction contributes to endothelial vasodilator dysfunction in this population. METHODS Forearm blood flow responses to selective ET(A) receptor blockade (BQ-123; 100 nmol/min) were determined in 26 normotensive adults (age 55 ± 1 years; BP 112 ± 1/72 ± 1 mm Hg) and 30 prehypertensive adults (57 ± 1 years; BP 130 ± 1/80 ± 1 mm Hg). In a subset of participants, forearm blood flow responses to nonselective ET-1 receptor blockade (BQ-123 + BQ-788) were determined. Endothelium-dependent vasodilation to acetylcholine (8.0-32.0 μg/100 mL tissue/min) was measured in the absence and presence of selective ET(A) receptor blockade. RESULTS BQ-123 elicited a significantly greater increase in forearm blood flow in prehypertensive (approximately 20%) than in normotensive (approximately 5%) adults. Addition of BQ-788 resulted in a further increase (P < 0.05) in forearm blood flow in prehypertensive but not in normotensive adults. Forearm blood flow responses to acetylcholine were lower (P < 0.05) in prehypertensive (4.6 ± 0.3 to 12.6 ± 0.5 mL/100 mL tissue/min) than in normotensive (4.9 ± 0.3 to 14.7 ± 0.8 mL/100 mL tissue/min) adults. Co-infusion of BQ-123 did not affect acetylcholine-induced vasodilation in normotensive adults but resulted in an approximately 20% increase (P < 0.05) in prehypertensive adults. CONCLUSIONS ET-1-mediated vasoconstrictor tone is elevated with prehypertension, contributing to impaired endothelium-dependent vasodilation. ET-1 vasoconstriction may underlie the increased risk of hypertension and cardiovascular disease in prehypertensive adults.

Collaboration


Dive into the Brian R. Weil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian L. Stauffer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Christopher A. DeSouza

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jared J. Greiner

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyle J. Diehl

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian M. Westby

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge