Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian S. Hawkett is active.

Publication


Featured researches published by Brian S. Hawkett.


Langmuir | 2008

Pigment Encapsulation by Emulsion Polymerization Using Macro-RAFT Copolymers

Duc Nguyen; Hollie Zondanos; Jason Michael Farrugia; Algirdas K. Serelis; Chris Such; Brian S. Hawkett

A new method is described, based on living amphipathic random macro-RAFT copolymers, which enables the efficient polymeric encapsulation of both inorganic and organic particulate materials via free-radical polymerization. The mechanism for this new approach is examined in the context of the polymer coating of zirconia- and alumina-coated titanium dioxide particles and its breadth of application demonstrated by the coating of organic phthalocyanine blue pigment particles. The particulate materials were first dispersed in water using a macro-RAFT copolymer as a stabilizer. Monomer and water-soluble initiator were then added to the system, and the monomer polymerized to form the coating. If nucleation of new polymer particles in the aqueous phase was to be avoided, it was found necessary to use a macro-RAFT copolymer that did not form micelles; within this constraint, a broad range of RAFT agents could be used. The macro-RAFT agents used in this work were found not to transfer competitively in the aqueous phase and therefore did not support growth of aqueous-phase polymer. Successful encapsulation of particles was demonstrated by TEM. The process described enables 100% of the particles to be encapsulated with greater than 95% of the polymer finishing up in the polymeric shells around the particles. Moreover, the coating reaction can be carried out at greater than 50% solids in many cases and avoids the agglomeration of particles during the coating step.


Macromolecular Rapid Communications | 2009

Chain Transfer to Polymer and Branching in Controlled Radical Polymerizations of n-Butyl Acrylate

Nasir M. Ahmad; Bernadette Charleux; Céline Farcet; Christopher J. Ferguson; Scott G. Gaynor; Brian S. Hawkett; Frank Heatley; Bert Klumperman; Dominik Konkolewicz; Peter A. Lovell; Krzysztof Matyjaszewski; Rajan Venkatesh

Chain transfer to polymer (CTP) in conventional free-radical polymerizations (FRPs) and controlled radical polymerizations (ATRP, RAFT and NMP) of n-butyl acrylate (BA) has been investigated using (13) C NMR measurements of branching in the poly(n-butyl acrylate) produced. The mol-% branches are reduced significantly in the controlled radical polymerizations as compared to conventional FRPs. Several possible explanations for this observation are discussed critically and all except one refuted. The observations are explained in terms of differences in the concentration of highly reactive short-chain radicals which can be expected to undergo both intra- and inter-molecular CTP at much higher rates than long-chain radicals. In conventional FRP, the distribution of radical concentrations is broad and there always is present a significant proportion of short-chain radicals, whereas in controlled radical polymerizations, the distribution is narrow with only a small proportion of short-chain radicals which diminishes as the living chains grow. Hence, irrespective of the type of control, controlled radical polymerizations give rise to lower levels of branching, when performed under otherwise similar conditions to conventional FRP. Similar observations are expected for other acrylates and monomers that undergo chain transfer to polymer during radical polymerization.


Chemical Engineering Science | 2002

Operation of semi-batch emulsion polymerisation reactors: Modelling, validation and effect of operating conditions

Joseph Zeaiter; J.A. Romagnoli; Geoffrey W. Barton; Vincent G. Gomes; Brian S. Hawkett; Robert G. Gilbert

A detailed dynamic model was developed for a styrene emulsion polymerisation semi-batch reactor to predict the evolution of the product particle size distribution (PSD) and molecular weight distribution (MWD) over the entire range of monomer conversion. A system exhibiting zero-one kinetics was employed, with the model comprising a set of rigorously developed population balance equations to predict monomer conversion, PSD and MWD. The modelling equations included diffusion-controlled kinetics at high monomer conversion where the transition from the zero-one regime to a pseudo-bulk regime occurs. The model predictions were found to be in good agreement with experimental results. Both particle growth and the PSD were found to be strongly affected by the monomer feedrate. Reactor temperature had a major influence on the MWD which was, however, insensitive to changes in the monomer feedrate. These findings were confirmed experimentally. As a result, it seems reasonable to propose that the use of the monomer feedrate to control the PSD and the reactor temperature to control the MWD are appropriate in practical situations. Consequently, an optimal monomer feed trajectory was developed off-line (using the validated reactor simulation) and verified experimentally by producing a polymer with specific PSD characteristics.


Langmuir | 2009

Polymer Encapsulated Gibbsite Nanoparticles: Efficient Preparation of Anisotropic Composite Latex Particles by RAFT-Based Starved Feed Emulsion Polymerization

Syed I. Ali; Johan P. A. Heuts; Brian S. Hawkett; Alex M. van Herk

Anisotropic polymer-inorganic composite latex particles were synthesized by using a RAFT-based encapsulation approach on cationic gibbsite platelets. By using the RAFT agent dibenzyl trithiocarbonate, a series of amphipatic living random RAFT copolymers with different combinations of acrylic acid and butyl acrylate units were synthesized. These RAFT copolymers were used as living stabilizers for the gibbsite platelets and chain extended to form a polymeric shell by starved feed emulsion polymerization. Cryo-TEM characterization of the resulting composite latexes demonstrates the formation of anisotropic composite latex particles with mostly one platelet per particle. Monomer feed composition, chain length, and hydrophilic-lipophilic balance of the RAFT copolymer were found to be important factors for the overall efficiency of the encapsulation. Good control over platelet orientation and high encapsulation efficiency were achieved via this route.


Langmuir | 2010

Optimized Steric Stabilization of Aqueous Ferrofluids and Magnetic Nanoparticles

Nirmesh Jain; Yanjun Wang; Stephen K. Jones; Brian S. Hawkett; Gregory G. Warr

The preparation and properties of an aqueous ferrofluid consisting of a concentrated (>65 wt %) dispersion of sterically stabilized superparamagnetic, iron oxide (maghemite) nanoparticles stable for several months at high ionic strength and over a broad pH range is described. The 6-8 nm diameter nanoparticles are individually coated with a short poly(acrylic acid)-b-poly(acrylamide) copolymer, designed to form the thinnest possible steric stabilizing layer while remaining strongly attached to the iron oxide surface over a wide range of nanoparticle concentrations. Thermogravimetric analysis yields an iron oxide content of 76 wt % in the dried particles, consistent with a dry polymer coating of approximately 1 nm in thickness, while the poly(acrylamide) chain length indicated by electrospray mass spectrometry is consistent with the 4-5 nm increase in the hydrodynamic radius observed by light scattering when the poly(acrylamide) stabilizing chains are solvated. Saturation magnetization experiments indicate nonmagnetic surface layers resulting from the strong chemical attachment of the poly(acrylic acid) block to the particle surface, also observed by Fourier transform infrared spectroscopy.


ACS Applied Materials & Interfaces | 2011

Stable and Water-Tolerant Ionic Liquid Ferrofluids

Nirmesh Jain; Xiaoli Zhang; Brian S. Hawkett; Gregory G. Warr

Ionic liquid ferrofluids have been prepared containing both bare and sterically stabilized 8-12 nm diameter superparamagnetic iron oxide nanoparticles, which remain stable for several months in both protic ethylammonium and aprotic imidazolium room-temperature ionic liquids. These ferrofluids exhibit spiking in static magnetic fields similar to conventional aqueous and nonaqueous ferrofluids. Ferrofluid stability was verified by following the flocculation and settling behavior of dilute nanoparticle dispersions. Although bare nanoparticles showed excellent stability in some ILs, they were unstable in others, and exhibited limited water tolerance. Stability was achieved by incorporating a thin polymeric steric stabilization layer designed to be compatible with the IL. This confers the added benefit of imbuing the ILF with a high tolerance to water.


Journal of Physical Chemistry B | 2009

Obtaining Kinetic Information from the Chain-Length Distribution of Polymers Produced by RAFT

Dominik Konkolewicz; Meiliana Siauw; Angus Gray-Weale; Brian S. Hawkett; Sébastien Perrier

We describe a simple model for the kinetics and chain-length distribution of polymers made by living radical techniques. Living radical methods give good control over the molecular weight of a linear polymer by capping the growing end and forming a dormant chain. The polymer is predominantly capped, and occasionally decaps to form a radical that propagates for a short period before recapping. Our model uses this mechanism to describe the chain-length distribution of polymers made by living radical methods. We focus on oligomers made by reversible addition-fragmentation chain transfer (RAFT) polymerization as model systems. Our model can determine optimal reaction conditions for desired polymer properties and test hypotheses about reaction schemes by using only two parameters, with each parameter related to the kinetics. The first parameter is the mean number of monomers added when a chain decaps. A broad distribution results if many monomers are added upon decapping. The second parameter is the mean number of times a polymer decaps. Many decapping events indicate high monomer conversion. Our model gives kinetic information by directly fitting to an experimental chain-length distribution, which is the reverse of other kinetic models that generate the distribution from rate coefficients. Our approach has also the advantage of being simpler than previously published kinetic schemes, which use many rate coefficients as inputs. Our model was tested against three monomers (acrylic acid, butyl acrylate, and styrene) and two RAFT agents. In each case, we successfully describe the chain-length distribution, and give information about the kinetics, especially the probability of propagation versus deactivation by the RAFT mechanism. This excellent agreement with a priori expectations and quantum calculations makes our model a powerful tool for predicting the structure of polymers obtained by living radical polymerization.


Polymer Chemistry | 2015

Synthesis of polymeric janus nanoparticles and their application in surfactant-free emulsion polymerizations

Binh T. T. Pham; Chris Such; Brian S. Hawkett

A robust and simple synthesis of nano-size oblate to dumbbell shaped polymeric anisotropic particles using RAFT mediated emulsion polymerization is presented. The particle synthesis relies on the property that monomer swollen cross-linked polymer seed particles shrink and expel some of the monomer when heated. Thus, upon heating for polymerization, some of the swelling monomer is expelled and subsequently polymerizes to form a bulge on the side of the original crosslinked seed particle. The shape of the bulge, and the degree of contact that the expelled monomer maintains with the original seed particle, is controlled by controlling the wettability of the seed surface by the expelled monomer. Very small monodisperse cross-linked polymer particles are initially prepared by RAFT mediated emulsion polymerization, then swollen with monomer and further polymerized to form anisotropic particles with a long dimension as little as 25 nm. Both the shape of the anisotropic bulge and the polymer composition, of each end of the final Janus nanoparticle can be finely controlled. The surface active properties of the Janus nanoparticles are demonstrated by their ability to contribute as stabilizers and influence particle formation in a surfactant free ab-initio emulsion polymerization. The method provides a simple and reproducible process for the production of Janus colloidal nanoparticles readily achievable in a normal latex plant where batch size would be limited only by the size of the reactor.


ACS Applied Materials & Interfaces | 2016

Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF

Liam R. J. Scarratt; Ben S. Hoatson; Elliot S. Wood; Brian S. Hawkett; Chiara Neto

We report the fabrication of both single-scale and hierarchical superhydrophobic surfaces, created by exploiting the spontaneous wrinkling of a rigid Teflon AF film on two types of shrinkable plastic substrates. Sub-100 nm to micrometric wrinkles were reproducibly generated by this simple process, with remarkable control over the size and hierarchy. Hierarchical Teflon AF wrinkled surfaces showed extremely high water repellence (contact angle 172°) and very low contact angle hysteresis (2°), resulting in droplets rolling off the surface at tilt angles lower than 5°. The wrinkling process intimately binds the Teflon AF layer with its substrate, making these surfaces mechanically robust, as revealed by macroscale and nanoscale wear tests: hardness values were close to that of commercial optical lenses and aluminum films, resistance to scratch was comparable to commercial hydrophobic coatings, and damage by extensive sonication did not significantly affect water repellence. By this fabrication method the size of the wrinkles can be reproducibly tuned from the nanoscale to the microscale, across the whole surface in one step; the fabrication procedure is extremely rapid, requiring only 2 min of thermal annealing to produce the desired topography, and uses inexpensive materials. The very low roll-off angles achieved in the hierarchical surfaces offer a potentially up-scalable alternative as self-cleaning and drag-reducing coatings.


Langmuir | 2014

Self-Assembling Array of Magnetoelectrostatic Jets from the Surface of a Superparamagnetic Ionic Liquid

Lyon B. King; Edmond J. Meyer; Mark A. Hopkins; Brian S. Hawkett; Nirmesh Jain

Electrospray is a versatile technology used, for example, to ionize biomolecules for mass spectrometry, create nanofibers and nanowires, and propel spacecraft in orbit. Traditionally, electrospray is achieved via microfabricated capillary needle electrodes that are used to create the fluid jets. Here we report on multiple parallel jetting instabilities realized through the application of simultaneous electric and magnetic fields to the surface of a superparamagnetic electrically conducting ionic liquid with no needle electrodes. The ionic liquid ferrofluid is synthesized by suspending magnetic nanoparticles in a room-temperature molten salt carrier liquid. Two ILFFs are reported: one based on ethylammonium nitrate (EAN) and the other based on EMIM-NTf2. The ILFFs display an electrical conductivity of 0.63 S/m and a relative magnetic permeability as high as 10. When coincident electric and magnetic fields are applied to these liquids, the result is a self-assembling array of emitters that are composed entirely of the colloidal fluid. An analysis of the magnetic surface stress induced on the ILFF shows that the electric field required for transition to spray can be reduced by as much as 4.5 × 10(7) V/m compared to purely electrostatic spray. Ferrofluid mode studies in nonuniform magnetic fields show that it is feasible to realize arrays with up to 16 emitters/mm(2).

Collaboration


Dive into the Brian S. Hawkett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge