Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Sherer is active.

Publication


Featured researches published by Brian Sherer.


Bioorganic & Medicinal Chemistry Letters | 2011

Pyrrolamide DNA gyrase inhibitors: optimization of antibacterial activity and efficacy.

Brian Sherer; Kenneth Gregory Hull; Oluyinka Green; Gregory Basarab; Sheila Irene Hauck; Pamela Hill; James T. Loch; George Mullen; Shanta Bist; Joanna Bryant; Ann Boriack-Sjodin; Jon Read; Nancy DeGrace; Maria Uria-Nickelsen; Ruth Illingworth; Ann E. Eakin

The pyrrolamides are a new class of antibacterial agents targeting DNA gyrase, an essential enzyme across bacterial species and inhibition results in the disruption of DNA synthesis and subsequently, cell death. The optimization of biochemical activity and other drug-like properties through substitutions to the pyrrole, piperidine, and heterocycle portions of the molecule resulted in pyrrolamides with improved cellular activity and in vivo efficacy.


Antimicrobial Agents and Chemotherapy | 2012

Pyrrolamide DNA Gyrase Inhibitors: Fragment-Based Nuclear Magnetic Resonance Screening To Identify Antibacterial Agents

Ann E. Eakin; Oluyinka Green; Neil J. Hales; Grant K. Walkup; Shanta Bist; Alok Singh; George Mullen; Joanna Bryant; Kevin J. Embrey; Ning Gao; Alex Breeze; Dave Timms; Beth Andrews; Maria Uria-Nickelsen; Julie Demeritt; James T. Loch; Ken Hull; April E. Blodgett; Ruth Illingworth; Bryan Prince; P. Ann Boriack-Sjodin; Sheila Irene Hauck; Lawrence Macpherson; Haihong Ni; Brian Sherer

ABSTRACT DNA gyrase is an essential enzyme in bacteria, and its inhibition results in the disruption of DNA synthesis and, subsequently, cell death. The pyrrolamides are a novel class of antibacterial agents targeting DNA gyrase. These compounds were identified by a fragment-based lead generation (FBLG) approach using nuclear magnetic resonance (NMR) screening to identify low-molecular-weight compounds that bind to the ATP pocket of DNA gyrase. A pyrrole hit with a binding constant of 1 mM formed the basis of the design and synthesis of a focused library of compounds that resulted in the rapid identification of a lead compound that inhibited DNA gyrase with a 50% inhibitory concentration (IC50) of 3 μM. The potency of the lead compound was further optimized by utilizing iterative X-ray crystallography to yield DNA gyrase inhibitors that also displayed antibacterial activity. Spontaneous mutants were isolated in Staphylococcus aureus by plating on agar plates containing pyrrolamide 4 at the MIC. The resistant variants displayed 4- to 8-fold-increased MIC values relative to the parent strain. DNA sequencing revealed two independent point mutations in the pyrrolamide binding region of the gyrB genes from these variants, supporting the hypothesis that the mode of action of these compounds was inhibition of DNA gyrase. Efficacy of a representative pyrrolamide was demonstrated against Streptococcus pneumoniae in a mouse lung infection model. These data demonstrate that the pyrrolamides are a novel class of DNA gyrase inhibitors with the potential to deliver future antibacterial agents targeting multiple clinical indications.


Journal of Medicinal Chemistry | 2013

Fragment-to-Hit-to-Lead Discovery of a Novel Pyridylurea Scaffold of ATP Competitive Dual Targeting Type II Topoisomerase Inhibiting Antibacterial Agents.

Gregory S. Basarab; John Irvin Manchester; Shanta Bist; P.A Boriack-Sjodin; B Dangel; Ruth Illingworth; Brian Sherer; S Sriram; Maria Uria-Nickelsen; Ann E. Eakin

The discovery and optimization of a new class of bacterial topoisomerase (DNA gyrase and topoisomerase IV) inhibitors binding in the ATP domain are described. A fragment molecule, 1-ethyl-3-(2-pyridyl)urea, provided sufficiently potent enzyme inhibition (32 μM) to prompt further analogue work. Acids and acid isosteres were incorporated at the 5-pyridyl position of this fragment, bridging to a key asparagine residue, improving enzyme inhibition, and leading to measurable antibacterial activity. A CF3-thiazole substituent at the 4-pyridyl position improved inhibitory potency due to a favorable lipophilic interaction. Promising antibacterial activity was seen versus the Gram-positive pathogens Staphylococcus aureus and Streptococcus pneumoniae and the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis . Precursor metabolite incorporation and mutant analysis studies support the mode-of-action, blockage of DNA synthesis by dual target topoisomerase inhibition. Compound 35 was efficacious in a mouse S. aureus disease model, where a 4.5-log reduction in colony forming units versus control was demonstrated.


Journal of Medicinal Chemistry | 2014

Optimization of pyrrolamide topoisomerase II inhibitors toward identification of an antibacterial clinical candidate (AZD5099).

Gregory S. Basarab; Pamela Hill; C. Edwin Garner; Ken Hull; Oluyinka Green; Brian Sherer; P. Brian Dangel; John Irvin Manchester; Shanta Bist; Sheila I. Hauck; Fei Zhou; Maria Uria-Nickelsen; Ruth Illingworth; Richard A. Alm; Mike Rooney; Ann E. Eakin

AZD5099 (compound 63) is an antibacterial agent that entered phase 1 clinical trials targeting infections caused by Gram-positive and fastidious Gram-negative bacteria. It was derived from previously reported pyrrolamide antibacterials and a fragment-based approach targeting the ATP binding site of bacterial type II topoisomerases. The program described herein varied a 3-piperidine substituent and incorporated 4-thiazole substituents that form a seven-membered ring intramolecular hydrogen bond with a 5-position carboxylic acid. Improved antibacterial activity and lower in vivo clearances were achieved. The lower clearances were attributed, in part, to reduced recognition by the multidrug resistant transporter Mrp2. Compound 63 showed notable efficacy in a mouse neutropenic Staphylococcus aureus infection model. Resistance frequency versus the drug was low, and reports of clinical resistance due to alteration of the target are few. Hence, 63 could offer a novel treatment for serious issues of resistance to currently used antibacterials.


International Journal of Antimicrobial Agents | 2013

Novel DNA gyrase inhibitors: microbiological characterisation of pyrrolamides.

Maria Uria-Nickelsen; April E. Blodgett; Heather Kamp; Ann E. Eakin; Brian Sherer; Oluyinka Green

Pyrrolamides are a novel class of antibacterial agents that target DNA gyrase, resulting in inhibition of DNA synthesis and bacterial cell death. In these studies, advanced compounds were shown to have potent in vitro activity against selected Gram-positive and Gram-negative pathogens, including meticillin-resistant Staphylococcus aureus, meticillin- and quinolone-resistant S. aureus, vancomycin-resistant enterococci, penicillin-resistant Streptococcus pneumoniae and β-lactamase-producing Haemophilus influenzae and Moraxella catarrhalis. Representatives of the class were demonstrated to be bactericidal, with frequencies of spontaneous resistance ≤1×10(-7) when plated at concentrations equivalent to their minimum inhibitory concentration. Mode of action studies suggested that the activity of these compounds is due to inhibition of the GyrB subunit of DNA gyrase in key pathogens. The antibacterial activity, spectrum and mode of action of these compounds underscore the promise of the pyrrolamide series as attractive candidates for the treatment of several clinical indications, including respiratory and soft tissue infections.


Bioorganic & Medicinal Chemistry Letters | 2018

Optimization of the efflux ratio and permeability of covalent irreversible BTK inhibitors

Hui Qiu; Lesley Liu-Bujalski; Richard D. Caldwell; Ariele Viacava Follis; Anna S. Gardberg; Andreas Goutopoulos; Roland Grenningloh; Jared Head; Theresa L. Johnson; Christopher Charles Victor Jones; Reinaldo Jones; Igor Mochalkin; Federica Morandi; Constantin Neagu; Justin Potnick; Brian Sherer

Brutons tyrosine kinase (Btk) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage (e.g. B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible Btk inhibitors targeting Cys481 within the ATP-binding pocket have been applied in the treatment of B-cell malignancies. Starting from a fragment, we discovered a novel series of potent covalent irreversible Btk inhibitors that bear N-linked groups occupying the solvent accessible pocket (SAP) of the active site of the Btk kinase domain. The hit molecules, however, displayed high P-gp mediated efflux ratio (ER) and poor A-B permeability in Caco-2 assay. By decreasing tPSA, installing steric hindrance and adjusting clogP, one top molecule 9 was discovered, which showed a 99% decrease in efflux ratio and a 90-fold increase in A-B permeability compared to hit molecule 1.


Archive | 2010

Heterocyclic urea derivatives and methods of use thereof

Shanta Bist; Brian Dangel; Brian Sherer


Archive | 2006

Antibacterial piperidine derivatives

Greg Basarab; Brian Dangel; Paul R. Fleming; Michael Barry Gravestock; Oluyinka Green; Sheila I. Hauck; Pamela Hill; Kenneth Gregory Hull; George Mullen; Brian Sherer; Fei Zhou; Haihong Ni


Archive | 2007

ANTIBACTERIAL POLYCYCLIC UREA COMPOUNDS

Gregory Basarab; Shanta Bist; John Irvin Manchester; Brian Sherer


Archive | 2008

5-6-bicyclic heteroaromatic compounds with antibacterial activity

Brian Dangel; John Irvin Manchester; Brian Sherer

Collaboration


Dive into the Brian Sherer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge