Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian T. Chait is active.

Publication


Featured researches published by Brian T. Chait.


Nature | 2003

X-ray structure of a voltage-dependent K + channel

Youxing Jiang; Alice Lee; Jiayun Chen; Vanessa Ruta; Martine Cadene; Brian T. Chait; Roderick MacKinnon

Voltage-dependent K+ channels are members of the family of voltage-dependent cation (K+, Na+ and Ca2+) channels that open and allow ion conduction in response to changes in cell membrane voltage. This form of gating underlies the generation of nerve and muscle action potentials, among other processes. Here we present the structure of KvAP, a voltage-dependent K+ channel from Aeropyrum pernix. We have determined a crystal structure of the full-length channel at a resolution of 3.2 Å, and of the isolated voltage-sensor domain at 1.9 Å, both in complex with monoclonal Fab fragments. The channel contains a central ion-conduction pore surrounded by voltage sensors, which form what we call ‘voltage-sensor paddles’—hydrophobic, cationic, helix–turn–helix structures on the channels outer perimeter. Flexible hinges suggest that the voltage-sensor paddles move in response to membrane voltage changes, carrying their positive charge across the membrane.


Nature | 2002

X-RAY STRUCTURE OF A CLC CHLORIDE CHANNEL AT 3.0 A REVEALS THE MOLECULAR BASIS OF ANION SELECTIVITY

Raimund Dutzler; Ernest B. Campbell; Martine Cadene; Brian T. Chait; Roderick MacKinnon

The ClC chloride channels catalyse the selective flow of Cl- ions across cell membranes, thereby regulating electrical excitation in skeletal muscle and the flow of salt and water across epithelial barriers. Genetic defects in ClC Cl- channels underlie several familial muscle and kidney diseases. Here we present the X-ray structures of two prokaryotic ClC Cl- channels from Salmonella enterica serovar typhimurium and Escherichia coli at 3.0 and 3.5 Å, respectively. Both structures reveal two identical pores, each pore being formed by a separate subunit contained within a homodimeric membrane protein. Individual subunits are composed of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a selectivity filter in which a Cl- ion is stabilized by electrostatic interactions with α-helix dipoles and by chemical coordination with nitrogen atoms and hydroxyl groups. These findings provide a structural basis for further understanding the function of ClC Cl- channels, and establish the physical and chemical basis of their anion selectivity.


Nature | 2002

Crystal structure and mechanism of a calcium-gated potassium channel

Youxing Jiang; Alice Lee; Jiayun Chen; Martine Cadene; Brian T. Chait; Roderick MacKinnon

Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K+ channel that opens in response to intracellular Ca2+. We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K+ channel (MthK) from Methanobacterium thermoautotrophicum in the Ca2+-bound, opened state. Eight RCK domains (regulators of K+ conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca2+ binding in a simple manner to perform mechanical work to open the pore.


Nature | 2002

The open pore conformation of potassium channels.

Youxing Jiang; Alice Lee; Jiayun Chen; Martine Cadene; Brian T. Chait; Roderick MacKinnon

Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channels membrane-spanning ion pathway. KcsA and MthK, closed and opened K+ channels, respectively, reveal how such gating transitions occur. Pore-lining ‘inner’ helices contain a ‘gating hinge’ that bends by approximately 30°. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12 Å) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K+ channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.


Nature | 2006

A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling.

Joanna Wysocka; Tomek Swigut; Hua Xiao; Thomas A. Milne; So Yeon Kwon; Landry J; Kauer M; Alan J. Tackett; Brian T. Chait; Paul Badenhorst; Carl Wu; Allis Cd

Lysine methylation of histones is recognized as an important component of an epigenetic indexing system demarcating transcriptionally active and inactive chromatin domains. Trimethylation of histone H3 lysine 4 (H3K4me3) marks transcription start sites of virtually all active genes. Recently, we reported that the WD40-repeat protein WDR5 is important for global levels of H3K4me3 and control of HOX gene expression. Here we show that a plant homeodomain (PHD) finger of nucleosome remodelling factor (NURF), an ISWI-containing ATP-dependent chromatin-remodelling complex, mediates a direct preferential association with H3K4me3 tails. Depletion of H3K4me3 causes partial release of the NURF subunit, BPTF (bromodomain and PHD finger transcription factor), from chromatin and defective recruitment of the associated ATPase, SNF2L (also known as ISWI and SMARCA1), to the HOXC8 promoter. Loss of BPTF in Xenopus embryos mimics WDR5 loss-of-function phenotypes, and compromises spatial control of Hox gene expression. These results strongly suggest that WDR5 and NURF function in a common biological pathway in vivo, and that NURF-mediated ATP-dependent chromatin remodelling is directly coupled to H3K4 trimethylation to maintain Hox gene expression patterns during development. We also identify a previously unknown function for the PHD finger as a highly specialized methyl-lysine-binding domain.


Journal of Cell Biology | 2002

Proteomic analysis of the mammalian nuclear pore complex

Janet M. Cronshaw; Andrew N. Krutchinsky; Wenzhu Zhang; Brian T. Chait; Michael J. Matunis

As the sole site of nucleocytoplasmic transport, the nuclear pore complex (NPC) has a vital cellular role. Nonetheless, much remains to be learned about many fundamental aspects of NPC function. To further understand the structure and function of the mammalian NPC, we have completed a proteomic analysis to identify and classify all of its protein components. We used mass spectrometry to identify all proteins present in a biochemically purified NPC fraction. Based on previous characterization, sequence homology, and subcellular localization, 29 of these proteins were classified as nucleoporins, and a further 18 were classified as NPC-associated proteins. Among the 29 nucleoporins were six previously undiscovered nucleoporins and a novel family of WD repeat nucleoporins. One of these WD repeat nucleoporins is ALADIN, the gene mutated in triple-A (or Allgrove) syndrome. Our analysis defines the proteome of the mammalian NPC for the first time and paves the way for a more detailed characterization of NPC structure and function.


Nature | 2007

The molecular architecture of the nuclear pore complex

Frank Alber; Svetlana Dokudovskaya; Liesbeth M. Veenhoff; Wenzhu Zhang; Julia Kipper; Damien P. Devos; Adisetyantari Suprapto; Orit Karni-Schmidt; Rosemary Williams; Brian T. Chait; Andrej Sali; Michael P. Rout

Nuclear pore complexes (NPCs) are proteinaceous assemblies of approximately 50 MDa that selectively transport cargoes across the nuclear envelope. To determine the molecular architecture of the yeast NPC, we collected a diverse set of biophysical and proteomic data, and developed a method for using these data to localize the NPC’s 456 constituent proteins (see the accompanying paper). Our structure reveals that half of the NPC is made up of a core scaffold, which is structurally analogous to vesicle-coating complexes. This scaffold forms an interlaced network that coats the entire curved surface of the nuclear envelope membrane within which the NPC is embedded. The selective barrier for transport is formed by large numbers of proteins with disordered regions that line the inner face of the scaffold. The NPC consists of only a few structural modules that resemble each other in terms of the configuration of their homologous constituents, the most striking of these being a 16-fold repetition of ‘columns’. These findings provide clues to the evolutionary origins of the NPC.


Science | 2011

Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding

Johannes F. Scheid; Hugo Mouquet; Beatrix Ueberheide; Ron Diskin; Florian Klein; Thiago Y. Oliveira; John Pietzsch; David Fenyö; Alexander Abadir; Klara Velinzon; Arlene Hurley; Sunnie Myung; Farid Boulad; Pascal Poignard; Dennis R. Burton; Florencia Pereyra; David D. Ho; Bruce D. Walker; Michael S. Seaman; Pamela J. Bjorkman; Brian T. Chait; Michel C. Nussenzweig

Anti-HIV broadly neutralizing antibodies with similar specificities and modes of binding were found in multiple HIV-infected individuals. Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.


Nature Biotechnology | 2001

Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome

Yoshiya Oda; Takeshi Nagasu; Brian T. Chait

The current progression from genomics to proteomics is fueled by the realization that many properties of proteins (e.g., interactions, post-translational modifications) cannot be predicted from DNA sequence. Although it has become feasible to rapidly identify proteins from crude cell extracts using mass spectrometry after two-dimensional electrophoretic separation, it can be difficult to elucidate low-abundance proteins of interest in the presence of a large excess of relatively abundant proteins. Therefore, for effective proteome analysis it becomes critical to enrich the sample to be analyzed in subfractions of interest. For example, the analysis of protein kinase substrates can be greatly enhanced by enriching the sample of phosphorylated proteins. Although enrichment of phosphotyrosine-containing proteins has been achieved through the use of high-affinity anti-phosphotyrosine antibodies, the enrichment of phosphoserine/threonine-containing proteins has not been routinely possible. Here, we describe a method for enriching phosphoserine/threonine-containing proteins from crude cell extracts, and for subsequently identifying the phosphoproteins and sites of phosphorylation. The method, which involves chemical replacement of the phosphate moieties by affinity tags, should be of widespread utility for defining signaling pathways and control mechanisms that involve phosphorylation or dephosphorylation of serine/threonine residues.


Nature Cell Biology | 2009

Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1- phosphatidylinositol 3-kinase complex

Yun Zhong; Qing Jun Wang; Xianting Li; Ying Yan; Jonathan M. Backer; Brian T. Chait; Nathaniel Heintz; Zhenyu Yue

Beclin 1, a mammalian autophagy protein that has been implicated in development, tumour suppression, neurodegeneration and cell death, exists in a complex with Vps34, the class III phosphatidylinositol-3-kinase (PI(3)K) that mediates multiple vesicle-trafficking processes including endocytosis and autophagy. However, the precise role of the Beclin 1–Vps34 complex in autophagy regulation remains to be elucidated. Combining mouse genetics and biochemistry, we have identified a large in vivo Beclin 1 complex containing the known proteins Vps34, p150/Vps15 and UVRAG, as well as two newly identified proteins, Atg14L (yeast Atg14-like) and Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein). Characterization of the new proteins revealed that Atg14L enhances Vps34 lipid kinase activity and upregulates autophagy, whereas Rubicon reduces Vps34 activity and downregulates autophagy. We show that Beclin 1 and Atg14L synergistically promote the formation of double-membraned organelles that are associated with Atg5 and Atg12, whereas forced expression of Rubicon results in aberrant late endosomal/lysosomal structures and impaired autophagosome maturation. We hypothesize that by forming distinct protein complexes, Beclin 1 and its binding proteins orchestrate the precise function of the class III PI(3)K in regulating autophagy at multiple steps.

Collaboration


Dive into the Brian T. Chait's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrej Sali

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Wang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Shi

Rockefeller University

View shared research outputs
Researchain Logo
Decentralizing Knowledge