Brian T. Mader
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian T. Mader.
Atmospheric Environment | 2001
David R. Cocker; Brian T. Mader; Markus Kalberer; John H. Seinfeld
An investigation of the effect of relative humidity on aerosol formation from m-xylene and 1,3,5-trimethylbenzene photooxidation is reported. Experiments were performed in the presence and absence of ammonium sulfate seed particles (both aqueous and dry) to ascertain the effect of partitioning of oxidation products into a strong electrolytic solution or onto dry crystalline seed particles. In marked contrast to the α-pinene/ozone system, the final measured secondary organic aerosol yield was unaffected by the presence of gas-phase or liquid-phase water at relative humidities (RH) up to 50%. The hygroscopic nature of the aerosol generated upon photooxidation of m-xylene and 1,3,5-trimethylbenzene was examined; the hygroscopicity of the aerosol at 85% RH for both parent organics increased with the extent of the reaction, indicating that the first-generation oxidation products undergo further oxidation. Limited identification of the gas- and aerosol-phase products of m-xylene and 1,3,5-trimethylbenzene photooxidation is reported. It is evident that a more complete molecular identification of aromatic photooxidation aerosol awaits analytical techniques not yet brought to bear on this problem.
Journal of Physical Chemistry A | 2008
Chad D. Vecitis; Hyunwoong Park; Jie Cheng; Brian T. Mader; Michael R. Hoffmann
The perfluorinated surfactants perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are recognized as widespread in the environment as well as recalcitrant toward most conventional water treatment technologies. In this study, acoustic cavitation as driven by high-frequency ultrasound is shown to be effective in the degradation of aqueous solutions of PFOS and PFOA and effective over a wide range of concentrations from 10 nM to 10 muM for a given compound. Sulfur, fluorine, and carbon mass balances indicate that mineralization occurs immediately following the degradation of the initial perfluorinated surfactant. Near complete conversion of PFOS and PFOA to CO, CO2, F-, and SO42- occurs due to pyrolytic reactions at the surface and vapor phase of transiently collapsing cavitation bubbles. The initial PFOS or PFOA pyrolytic degradation occurs at the bubble-water interface and involves the loss of the ionic functional group leading to the formation of the corresponding 1H-fluoroalkane or perfluoroolefin. The fluorochemical intermediates undergo a series of pyrolytic reactions in the bubble vapor leading to C1 fluoro-radicals. Secondary vapor-phase bimolecular reactions coupled with concomitant hydrolysis converts the C1 fluoro-radicals to carbon monoxide, carbon dioxide, and HF, forming a proton and fluoride upon dissolution. Sonochemical half-lives, which are calculated from high-temperature gas-phase kinetics, are consistent with kinetic observations and suggest that mineralization occurs shortly after initial perfluorinated surfactant interfacial pyrolysis.
Journal of Physical Chemistry A | 2009
Hyunwoong Park; Chad D. Vecitis; Jie Cheng; Wonyong Choi; Brian T. Mader; Michael R. Hoffmann
Perfluorinated chemicals (PFCs) are distributed throughout the environment. In the case of perfluorinated alkyl carboxylates and sulfonates, they can be classified as persistent organic pollutants since they are resistant to environmentally relevant reduction, oxidation, and hydrolytic processes. With this in mind, we report on the reductive defluorination of perfluorobutanoate, PFBA (C(3)F(7)CO(2)(-)), perfluorohexanoate, PFHA (C(5)F(11)CO(2)(-)), perfluorooctanoate, PFOA (C(7)F(15)CO(2)(-)), perfluorobutane sulfonate, PFBS (C(4)F(9)SO(3)(-)), perfluorohexane sulfonate, PFHS (C(6)F(13)SO(3)(-)), and perfluorooctane sulfonate, PFOS (C(8)F(17)SO(3)(-)) by aquated electrons, e(aq)(-), that are generated from the UV photolysis (lambda = 254 nm) of iodide. The ionic headgroup (-SO(3)(-) vs -CO(2)(-)) has a significant effect on the reduction kinetics and extent of defluorination (F index = -[F(-)](produced)/[PFC](degraded)). Perfluoroalkylsulfonate reduction kinetics and the F index increase linearly with increasing chain length. In contrast, perfluoroalkylcarboxylate chain length appears to have a negligible effect on the observed kinetics and the F index. H/F ratios in the gaseous fluoro-organic products are consistent with measured F indexes. Incomplete defluorination of the gaseous products suggests a reductive cleavage of the ionic headgroup occurs before complete defluorination. Detailed mechanisms involving initiation by aquated electrons are proposed.
Atmospheric Environment | 2003
Brian T. Mader; James J. Schauer; John H. Seinfeld; Jian Zhen Yu; Hong Yang; Ho Jin Lim; Barbara J. Turpin; Jeffrey T. Deminter; G. Heidemann; Min-Suk Bae; Patricia K. Quinn; T. S. Bates; D. J. Eatough; Barry J. Huebert; Timothy H. Bertram; S. Howell
Abstract The semi-volatile nature of carbonaceous aerosols complicates their collection, and for this reason special air sampling configurations must be utilized. ACE-Asia provided a unique opportunity to compare different sampling techniques for collecting carbonaceous aerosols. In this paper detailed comparisons between filter-based carbonaceous aerosol sampling methods are made. The majority of organic carbon (OC) present on a backup quartz fiber filter (QFF) in an undenuded-filter sampler resulted from the adsorption of native gaseous OC rather than OC evaporated from collected particles. The level of OC on a backup QFF placed behind a QFF was lower than the level present on a backup QFF placed behind a Teflon membrane filter (TMF) indicating that gas/filter equilibrium may not be achieved in some QFF front and backup filter pairs. Gas adsorption artifacts can result in a 20–100% overestimation of the ambient particle-phase OC concentration. The gas collection efficiency of XAD-coated and carbon-impregnated filter-lined denuders were not always 100%, but, nonetheless, such denuders minimize gas adsorption artifacts. The median fraction of particle-phase OC that is estimated to evaporate from particles collected by denuder-filter samplers ranged from 0 to 0.2; this value depends on the sampler configuration, chemical composition of the OC, and sampling conditions. After properly correcting for sampling artifacts, the measured OC concentration may differ by 10% between undenuded- and denuder-filter samplers. Uncorrected, such differences can be as large as a factor two, illustrating the importance of sampling configurations in which gas adsorption or evaporation artifacts are reduced or can be corrected.
Environmental Science & Technology | 2015
Elijah J. Petersen; Stephen A. Diamond; Alan J. Kennedy; Greg G. Goss; Kay Ho; Jamie R. Lead; Shannon K. Hanna; Nanna B. Hartmann; Kerstin Hund-Rinke; Brian T. Mader; Nicolas Manier; Pascal Pandard; Edward Salinas; Phil Sayre
The unique or enhanced properties of manufactured nanomaterials (MNs) suggest that their use in nanoenabled products will continue to increase. This will result in increased potential for human and environmental exposure to MNs during manufacturing, use, and disposal of nanoenabled products. Scientifically based risk assessment for MNs necessitates the development of reproducible, standardized hazard testing methods such as those provided by the Organisation of Economic Cooperation and Development (OECD). Currently, there is no comprehensive guidance on how best to address testing issues specific to MN particulate, fibrous, or colloidal properties. This paper summarizes the findings from an expert workshop convened to develop a guidance document that addresses the difficulties encountered when testing MNs using OECD aquatic and sediment test guidelines. Critical components were identified by workshop participants that require specific guidance for MN testing: preparation of dispersions, dose metrics, the importance and challenges associated with maintaining and monitoring exposure levels, and the need for reliable methods to quantify MNs in complex media. To facilitate a scientific advance in the consistency of nanoecotoxicology test results, we identify and discuss critical considerations where expert consensus recommendations were and were not achieved and provide specific research recommendations to resolve issues for which consensus was not reached. This process will enable the development of prescriptive testing guidance for MNs. Critically, we highlight the need to quantify and properly interpret and express exposure during the bioassays used to determine hazard values.
Journal of Physical Chemistry A | 2009
Tammy Y. Campbell; Chad D. Vecitis; Brian T. Mader; Michael R. Hoffmann
The sonochemical degradation kinetics of the aqueous perfluorochemicals (PFCs) perfluorobutanoate (PFBA), perfluorobutanesulfonate (PFBS), perfluorohexanoate (PFHA), and perfluorohexanesulfonate (PFHS) have been investigated. Surface tension measurements were used to evaluate chain-length effects on equilibrium air-water interface partitioning. The PFC air-water interface partitioning coefficients, KeqPF, and maximum surface concentrations, Gamma(max)PF, were determined from the surface pressure equation of state for PFBA, PFBS, PFHA, and PFHS. Relative KeqPF values were dependent upon chain length KeqPFHS approximately equal to 2.1KeqPFHA approximately equal to 3.9KeqPFBS approximately equal to 5.0KeqPFBA, whereas relative GammamaxPF values had minimal chain length dependence Gamma(max)PFHS approximately equal to Gamma(max)PFHA approximately equal to Gamma(max)PFBS approximately equal to 2.2Gamma(max)PFBA. The rates of sonolytic degradation were determined over a range of frequencies from 202 to 1060 kHz at dilute (<1 microM) initial PFC concentrations and are compared to previously reported results for their C8 analogs: perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Under all conditions, the time-dependent PFC sonolytic degradation was observed to follow pseudo-first-order kinetics, i.e., below kinetic saturation, suggesting bubble-water interface populations were significantly below the adsorption maximum. The PFHX (where X = A or S) sonolysis rate constant was observed to peak at an ultrasonic frequency of 358 kHz, similar to that for PFOX. In contrast, the PFBX degradation rate constants had an apparent maximum at 610 kHz. Degradation rates observed for PFHX are similar to previously determined PFOX rates, kapp,358PFOX approximately equal to kapp,358PFHX. PFOX is sonolytically pyrolyzed at the transiently cavitating bubble-water interface, suggesting that rates should be proportional to equilibrium interfacial partitioning. However, relative equilibrium air-water interfacial partitioning predicts that KeqPFOX 5KeqPFHX. This suggests that at dilute PFC concentrations, adsorption to the bubble-water interface is ultrasonically enhanced due to high-velocity radial bubble oscillations. PFC sonochemical kinetics are slower for PFBS and further diminished for PFBA as compared to longer analogs, suggesting that PFBX surface films are of lower stability due to their greater water solubility.
Environmental Toxicology and Chemistry | 2015
Brian T. Mader; Mark E. Ellefson; Susan T. Wolf
A liquid nebulization-differential mobility analysis methodology was evaluated for the measurement of the size distribution and quantitative mass concentration of nanomaterials in environmentally relevant aqueous media. The analysis time is 8 min, and the method requires little routine sample preparation and less than 8 mL of sample. The method can be used for rapid, direct analysis of nanomaterials in aqueous media with a particular application to dose verification in ecotoxicology studies, analysis of manufacturing process waste streams, and raw material analysis. Twelve reference materials having a diameter traceable to the National Institute of Standards and Technology were spiked into 6 different aqueous matrices that included drinking water, groundwater, industrial wastewater, as well as the algae and daphnia media used in ecotoxicology testing. Measurement of the diameter of a reference material was within the expected range for the reference material. Individual response factors for each reference material were determined in each medium and the accuracy and precision of the concentration measurements evaluated. In ecotoxicology test media, measurements of the concentration of nanoparticles having diameter ≥ 30 nm, had corresponding accuracies and precisions of 103% and 7%, respectively. Over 28 d 86% of the samples had concentrations within 20% of the initial concentration. The method limit of quantification depended primarily on matrix complexity and particle diameter; the limit of quantification ranged from 0.01 mg/L to 3 g/L.
Journal of Geophysical Research | 2004
Brian T. Mader; Jian Zhen Yu; Jie Xu; Qianfeng Li; Wai-Shing Wu; John H. Seinfeld
During the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), samples of carbonaceous aerosols were collected on board the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) De Havilland DHC-6 Twin Otter aircraft. The samples were analyzed to determine their total carbon (TC) and water-soluble organic compound (WSOC) contents as well as to identify the individual compounds comprising the WSOC fraction of the aerosol. The TC concentrations varied from 3.5 to 14.3 μg C m^(−3); the highest TC levels were observed for samples collected in pollution layers that originated over mainland China. WSOC concentrations ranged from 0.54 to 7.2 μg C m^(−3), with the WSOC fraction contributing from 10 to 50% of the carbon mass. About 50% of the carbonaceous aerosol mass in pollution layers could be attributed to WSOC. For samples collected in dust layers the WSOC fraction of TC was much lower than that observed in pollution layers. The sum of all the detected organic ions accounted for 6.9–19% of the WSOC. In the six samples collected by the Twin Otter during ACE-Asia, of the organic ions identified in the WSOC fraction, oxalate had the highest concentration. Samples collected from pollution layers exhibited a slightly higher ratio of formate to oxalate as compared to the other samples. Two samples had a relatively high ratio of lactate to oxalate, which might be a signature of some currently unidentified source of carbonaceous aerosol. The sum of the masses of sulfate and nitrate ions exceeded the sum of the masses of the identified organic ions by a factor of 9 to 17. The chemical levoglucosan, a tracer for biomass burning, comprised from 0.1 to 0.4% of TC mass. Comparing this ratio to the ratio measured directly in wood-burning studies it was determined that biomass burning may have represented from ≈2 to 10% of the carbonaceous aerosol collected during ACE-Asia.
Environmental Science & Technology | 2003
James J. Schauer; Brian T. Mader; Jeffrey T. Deminter; G. Heidemann; Min-Suk Bae; John H. Seinfeld; R. A. Cary; D. Smith; Barry J. Huebert; Timothy H. Bertram; S. Howell; J. T. Kline; P. Quinn; T. S. Bates; Barbara J. Turpin; Ho-Jin Lim; Jian Zhen Yu; Hong Yang; Melita Keywood
Frontiers of Environmental Science & Engineering in China | 2009
Chad D. Vecitis; Hyunwoong Park; Jie Cheng; Brian T. Mader; Michael R. Hoffmann