Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Turpin is active.

Publication


Featured researches published by Brian Turpin.


The New England Journal of Medicine | 2018

Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children

Alexander Drilon; Theodore W. Laetsch; Shivaani Kummar; Steven G. DuBois; Ulrik N. Lassen; George D. Demetri; Michael J. Nathenson; Robert C. Doebele; Anna F. Farago; Alberto S. Pappo; Brian Turpin; Afshin Dowlati; Marcia S. Brose; Leo Mascarenhas; Noah Federman; Jordan Berlin; Wafik S. El-Deiry; Christina Baik; John F. Deeken; Valentina Boni; Ramamoorthy Nagasubramanian; Matthew H. Taylor; Erin R. Rudzinski; Funda Meric-Bernstam; Davendra P.S. Sohal; Patrick C. Ma; Luis E. Raez; Jaclyn F. Hechtman; Ryma Benayed; Marc Ladanyi

Background Fusions involving one of three tropomyosin receptor kinases (TRK) occur in diverse cancers in children and adults. We evaluated the efficacy and safety of larotrectinib, a highly selective TRK inhibitor, in adults and children who had tumors with these fusions. Methods We enrolled patients with consecutively and prospectively identified TRK fusion–positive cancers, detected by molecular profiling as routinely performed at each site, into one of three protocols: a phase 1 study involving adults, a phase 1–2 study involving children, or a phase 2 study involving adolescents and adults. The primary end point for the combined analysis was the overall response rate according to independent review. Secondary end points included duration of response, progression‐free survival, and safety. Results A total of 55 patients, ranging in age from 4 months to 76 years, were enrolled and treated. Patients had 17 unique TRK fusion–positive tumor types. The overall response rate was 75% (95% confidence interval [CI], 61 to 85) according to independent review and 80% (95% CI, 67 to 90) according to investigator assessment. At 1 year, 71% of the responses were ongoing and 55% of the patients remained progression‐free. The median duration of response and progression‐free survival had not been reached. At a median follow‐up of 9.4 months, 86% of the patients with a response (38 of 44 patients) were continuing treatment or had undergone surgery that was intended to be curative. Adverse events were predominantly of grade 1, and no adverse event of grade 3 or 4 that was considered by the investigators to be related to larotrectinib occurred in more than 5% of patients. No patient discontinued larotrectinib owing to drug‐related adverse events. Conclusions Larotrectinib had marked and durable antitumor activity in patients with TRK fusion–positive cancer, regardless of the age of the patient or of the tumor type. (Funded by Loxo Oncology and others; ClinicalTrials.gov numbers, NCT02122913, NCT02637687, and NCT02576431.)


Pediatric Blood & Cancer | 2013

Pilot study of vincristine, oral irinotecan, and temozolomide (VOIT regimen) combined with bevacizumab in pediatric patients with recurrent solid tumors or brain tumors

Lars M. Wagner; Brian Turpin; Rajaram Nagarajan; Brian Weiss; Timothy P. Cripe; James I. Geller

The combination of vincristine, oral irinotecan, and temozolomide (VOIT regimen) has shown antitumor activity in a pediatric Phase I trial. To further potentiate synergy, we assessed the safety and feasibility of adding bevacizumab to VOIT for children and young adults with recurrent tumors.


Pediatric Blood & Cancer | 2017

Identification of NTRK fusions in pediatric mesenchymal tumors

Dean Pavlick; Alexa B. Schrock; Denise M. Malicki; Philip J. Stephens; Dennis J. Kuo; Hyunah Ahn; Brian Turpin; Kamran Badizegan; Jeffrey S. Ross; Vincent A. Miller; Victor Wong; Siraj M. Ali

NTRK fusions are known oncogenic drivers and have recently been effectively targeted by investigational agents in adults. We sought to assess the frequency of NTRK fusions in a large series of pediatric and adolescent patients with advanced cancers.


Lancet Oncology | 2018

Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study

Theodore W. Laetsch; Steven G. DuBois; Leo Mascarenhas; Brian Turpin; Noah Federman; Catherine M Albert; Ramamoorthy Nagasubramanian; Jessica L Davis; Erin R. Rudzinski; Angela M. Feraco; Brian B. Tuch; Kevin Ebata; Mark Reynolds; Steven M. Smith; Scott Cruickshank; Michael Craig Cox; Alberto S. Pappo; Douglas S. Hawkins

BACKGROUND Gene fusions involving NTRK1, NTRK2, or NTRK3 (TRK fusions) are found in a broad range of paediatric and adult malignancies. Larotrectinib, a highly selective small-molecule inhibitor of the TRK kinases, had shown activity in preclinical models and in adults with tumours harbouring TRK fusions. This study aimed to assess the safety of larotrectinib in paediatric patients. METHODS This multicentre, open-label, phase 1/2 study was done at eight sites in the USA and enrolled infants, children, and adolescents aged 1 month to 21 years with locally advanced or metastatic solid tumours or CNS tumours that had relapsed, progressed, or were non-responsive to available therapies regardless of TRK fusion status; had a Karnofsky (≥16 years of age) or Lansky (<16 years of age) performance status score of 50 or more, adequate organ function, and full recovery from the acute toxic effects of all previous anticancer therapy. Following a protocol amendment on Sept 12, 2016, patients with locally advanced infantile fibrosarcoma who would require disfiguring surgery to achieve a complete surgical resection were also eligible. Patients were enrolled to three dose cohorts according to a rolling six design. Larotrectinib was administered orally (capsule or liquid formulation), twice daily, on a continuous 28-day schedule, in increasing doses adjusted for age and bodyweight. The primary endpoint of the phase 1 dose escalation component was the safety of larotrectinib, including dose-limiting toxicity. All patients who received at least one dose of larotrectinib were included in the safety analyses. Reported here are results of the phase 1 dose escalation cohort. Phase 1 follow-up and phase 2 are ongoing. This trial is registered with ClinicalTrials.gov, number NCT02637687. FINDINGS Between Dec 21, 2015, and April 13, 2017, 24 patients (n=17 with tumours harbouring TRK fusions, n=7 without a documented TRK fusion) with a median age of 4·5 years (IQR 1·3-13·3) were enrolled to three dose cohorts: cohorts 1 and 2 were assigned doses on the basis of both age and bodyweight predicted by use of SimCyp modelling to achieve an area under the curve equivalent to the adult doses of 100 mg twice daily (cohort 1) and 150 mg twice daily (cohort 2); and cohort 3 was assigned to receive a dose of 100 mg/m2 twice daily (maximum 100 mg per dose), regardless of age, equating to a maximum of 173% of the recommended adult phase 2 dose. Among enrolled patients harbouring TRK fusion-positive cancers, eight (47%) had infantile fibrosarcoma, seven (41%) had other soft tissue sarcomas, and two (12%) had papillary thyroid cancer. Adverse events were predominantly grade 1 or 2 (occurring in 21 [88%] of 24 patients); the most common larotrectinib-related adverse events of all grades were increased alanine and aspartate aminotransferase (ten [42%] of 24 each), leucopenia (five [21%] of 24), decreased neutrophil count (five [21%] of 24), and vomiting (five [21%] of 24). Grade 3 alanine aminotransferase elevation was the only dose-limiting toxicity and occurred in one patient without a TRK fusion and with progressive disease. No grade 4 or 5 treatment-related adverse events were observed. Two larotrectinib-related serious adverse events were observed: grade 3 nausea and grade 3 ejection fraction decrease during the 28-day follow-up after discontinuing larotrectinib and while on anthracyclines. The maximum tolerated dose was not reached, and 100 mg/m2 (maximum of 100 mg per dose) was established as the recommended phase 2 dose. 14 (93%) of 15 patients with TRK fusion-positive cancers achieved an objective response as per Response Evaluation Criteria In Solid Tumors version 1.1; the remaining patient had tumour regression that did not meet the criteria for objective response. None of the seven patients with TRK fusion-negative cancers had an objective response. INTERPRETATION The TRK inhibitor larotrectinib was well tolerated in paediatric patients and showed encouraging antitumour activity in all patients with TRK fusion-positive tumours. The recommended phase 2 dose was defined as 100mg/m2 (maximum 100 mg per dose) for infants, children, and adolescents, regardless of age. FUNDING Loxo Oncology Inc.


Cancer Research | 2014

Thrombin Drives Tumorigenesis in Colitis-Associated Colon Cancer

Brian Turpin; Whitney Miller; Leah Rosenfeldt; Keith W. Kombrinck; Matthew J. Flick; Kris A. Steinbrecher; Eleana Harmel-Laws; Eric S. Mullins; Maureen Shaw; David P. Witte; Alexey S. Revenko; Brett P. Monia; Joseph S. Palumbo

The established association between inflammatory bowel disease and colorectal cancer underscores the importance of inflammation in colon cancer development. On the basis of evidence that hemostatic proteases are powerful modifiers of both inflammatory pathologies and tumor biology, gene-targeted mice carrying low levels of prothrombin were used to directly test the hypothesis that prothrombin contributes to tumor development in colitis-associated colon cancer (CAC). Remarkably, imposing a modest 50% reduction in circulating prothrombin in fII+/- mice, a level that carries no significant bleeding risk, dramatically decreased adenoma formation following an azoxymethane/dextran sodium sulfate challenge. Similar results were obtained with pharmacologic inhibition of prothrombin expression or inhibition of thrombin proteolytic activity. Detailed longitudinal analyses showed that the role of thrombin in tumor development in CAC was temporally associated with the antecedent inflammatory colitis. However, direct studies of the antecedent colitis showed that mice carrying half-normal prothrombin levels were comparable to control mice in mucosal damage, inflammatory cell infiltration, and associated local cytokine levels. These results suggest that thrombin supports early events coupled to inflammation-mediated tumorigenesis in CAC that are distinct from overall inflammation-induced tissue damage and inflammatory cell trafficking. That prothrombin is linked to early events in CAC was strongly inferred by the observation that prothrombin deficiency dramatically reduced the formation of very early, precancerous aberrant crypt foci. Given the importance of inflammation in the development of colon cancer, these studies suggest that therapeutic interventions at the level of hemostatic factors may be an effective means to prevent and/or impede colitis-associated colon cancer progression.


Pediatric Blood & Cancer | 2017

Severe cytokine release syndrome in a patient receiving PD‐1‐directed therapy

Seth Joshua Rotz; Daniel Leino; Sara Szabo; Jennifer Mangino; Brian Turpin; Joseph Gerald Pressey

Cytokine release syndrome (CRS) is a phenomenon of immune hyperactivation described in the setting of cellular and bispecific T‐cell engaging immunotherapy. Checkpoint blockade using anti‐programmed cell death 1 (anti‐PD‐1) inhibitors is an approach to antitumor immune system stimulation. A 29‐year‐old female with alveolar soft part sarcoma developed severe CRS after treatment with anti‐PD‐1 therapy. CRS was characterized by high fevers, encephalopathy, hypotension, hypoxia, hepatic dysfunction, and evidence of coagulopathy, and resolved after infusion of the interleukin‐6 inhibitor tocilizumab and corticosteroids.


Cancer | 2017

Detection of lymph node metastases in pediatric and adolescent/young adult sarcoma: Sentinel lymph node biopsy versus fludeoxyglucose positron emission tomography imaging—A prospective trial

Lars M. Wagner; Nathalie Kremer; Michael J. Gelfand; Susan Sharp; Brian Turpin; Rajaram Nagarajan; Gregory M. Tiao; Joseph Gerald Pressey; Julie Yin; Roshni Dasgupta

Lymph node metastases are an important cause of treatment failure for pediatric and adolescent/young adult (AYA) sarcoma patients. Nodal sampling is recommended for certain sarcoma subtypes that have a predilection for lymphatic spread. Sentinel lymph node biopsy (SLNB) may improve the diagnostic yield of nodal sampling, particularly when single‐photon emission computed tomography/computed tomography (SPECT‐CT) is used to facilitate anatomic localization. Functional imaging with positron emission tomography/computed tomography (PET‐CT) is increasingly used for sarcoma staging and is a less invasive alternative to SLNB. To assess the utility of these 2 staging methods, this study prospectively compared SLNB plus SPECT‐CT with PET‐CT for the identification of nodal metastases in pediatric and AYA patients.


PLOS ONE | 2015

Factor XIII Transglutaminase Supports the Resolution of Mucosal Damage in Experimental Colitis.

Christina Andersson; Peter Helding Kvist; Kathryn E. McElhinney; Richard Baylis; Luise K. Gram; Hermann Pelzer; Brian Lauritzen; Thomas Lindebo Holm; Simon P. Hogan; David Wu; Brian Turpin; Whitney Miller; Joseph S. Palumbo

The thrombin-activated transglutaminase factor XIII (FXIII) that covalently crosslinks and stablizes provisional fibrin matrices is also thought to support endothelial and epithelial barrier function and to control inflammatory processes. Here, gene-targeted mice lacking the FXIII catalytic A subunit were employed to directly test the hypothesis that FXIII limits colonic pathologies associated with experimental colitis. Wildtype (WT) and FXIII-/- mice were found to be comparable in their initial development of mucosal damage following exposure to dextran sulfate sodium (DSS) challenge. However, unlike FXIII-sufficient mice, FXIII-deficient cohorts failed to efficiently resolve colonic inflammatory pathologies and mucosal damage following withdrawal of DSS. Consistent with prior evidence of ongoing coagulation factor activation and consumption in individuals with active colitis, plasma FXIII levels were markedly decreased in colitis-challenged WT mice. Treatment of colitis-challenged mice with recombinant human FXIII-A zymogen significantly mitigated weight loss, intestinal bleeding, and diarrhea, regardless of whether cohorts were FXIII-sufficient or were genetically devoid of FXIII. Similarly, both qualitative and quantitative microscopic analyses of colonic tissues revealed that exogenous FXIII improved the resolution of multiple colitis disease parameters in both FXIII-/- and WT mice. The most striking differences were seen in the resolution of mucosal ulceration, the most severe histopathological manifestation of DSS-induced colitis. These findings directly demonstrate that FXIII is a significant determinant of mucosal healing and clinical outcome following inflammatory colitis induced mucosal injury and provide a proof-of-principle that clinical interventions supporting FXIII activity may be a means to limit colitis pathology and improve resolution of mucosal damage.


Cancer Genetics and Cytogenetics | 2016

Undifferentiated myxoid lipoblastoma with PLAG1–HAS2 fusion in an infant; morphologically mimicking primitive myxoid mesenchymal tumor of infancy (PMMTI)—diagnostic importance of cytogenetic and molecular testing and literature review

Mikako Warren; Brian Turpin; Melissa Mark; Teresa A. Smolarek; Xia Li

Lipoblastoma is a benign myxoid neoplasm arising in young children that typically demonstrates adipose differentiation. It is often morphologically indistinguishable from primitive myxoid mesenchymal tumor of infancy (PMMTI), which is characterized by a well-circumscribed myxoid mass with a proliferation of primitive mesenchymal cells with mild cytologic atypia. PMMTI occurs in the first year of life and is known to have locally aggressive behavior. No specific genetic rearrangements have been reported to date. In contrast, the presence of PLAG1 (Pleomorphic Adenoma Gene 1) rearrangement is diagnostic for lipoblastoma. We hereby demonstrate the combined application of multiple approaches to tackle the diagnostic challenges of a rapidly growing neck tumor in a 3-month-old female. An incisional tumor biopsy had features of an undifferentiated, myxoid mesenchymal neoplasm mimicking PMMTI. However, tumor cells showed diffuse nuclear expression by immunohistochemical (IHC) stain. Conventional cytogenetic and fluorescence in situ hybridization (FISH) analyses as well as next generation sequencing (NGS) demonstrated evidence of PLAG1 rearrangement, confirming the diagnosis of lipoblastoma. This experience warrants that undifferentiated myxoid lipoblastoma can mimic PMMTI, and the combination of cytogenetic and molecular approaches is essential to distinguish these two myxoid neoplasms. Literature on lipoblastomas with relevant molecular and cytogenetic findings is summarized. Our case is the first lipoblastoma diagnosed with a PLAG1 fusion defined by NGS technology.


Health Physics | 2013

Minimizing nuclear medicine technologist radiation exposure during 131I-MIBG therapy.

Brian Turpin; Victoria R. Morris; Lisa Lemen; Brian Weiss; Michael J. Gelfand

Abstract 131I-metaiodobenzylguanidine is a norepinephrine analog that concentrates in adrenergic tissue and has been shown to be an effective radiotherapeutic agent used to treat tumors of neural crest origin, particularly neuroblastoma, a sympathetic nervous system malignancy of children. The purpose of this study was to determine the radiation dose received by nuclear medicine technologists while preparing and administering 131I-metaiodobenzylguanidine therapy dosages, and if any changes could be implemented that would reduce a technologist’s dose. The study involves the collection of total whole body doses received by technologists during the treatment of six patients. Patient dosages ranged from 9.25 to 31.1 GBq, with radiation exposures to the nuclear medicine technologists averaging 0.024 &mgr;Sv per MBq administered to the patient. Subsequently, the doses received by the technologists were analyzed with respect to specific process steps performed during 131I-metaiodobenzylguanidine therapy including package receipt, dosage preparation, and dosage administration. Results show that the largest contribution to the technologist’s whole body radiation dose (>83%) is received during the dosage administration process step. After additional shielding was installed for use during the dosage administration process step, technologists’ doses decreased 80%.

Collaboration


Dive into the Brian Turpin's collaboration.

Top Co-Authors

Avatar

Alberto S. Pappo

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore W. Laetsch

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Douglas S. Hawkins

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

John P. Perentesis

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Gerald Pressey

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Leo Mascarenhas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Noah Federman

University of California

View shared research outputs
Top Co-Authors

Avatar

Rajaram Nagarajan

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge