Brian V. Balgobind
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian V. Balgobind.
Leukemia | 2009
Claus Meyer; E. Kowarz; J. Hofmann; Aline Renneville; Jan Zuna; Jan Trka; R. Ben Abdelali; Elizabeth Macintyre; E De Braekeleer; M. De Braekeleer; E. Delabesse; M. P. de Oliveira; H Cavé; Emmanuelle Clappier; J J M van Dongen; Brian V. Balgobind; M.M. van den Heuvel-Eibrink; H B Beverloo; Renate Panzer-Grümayer; A. Teigler-Schlegel; J. Harbott; E. Kjeldsen; S. Schnittger; U. Koehl; Bernd Gruhn; Olaf Heidenreich; Li Chong Chan; S. F. Yip; Martin Krzywinski; Cornelia Eckert
Chromosomal rearrangements of the human MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemias. These patients need to be identified, treated appropriately and minimal residual disease was monitored by quantitative PCR techniques. Genomic DNA was isolated from individual acute leukemia patients to identify and characterize chromosomal rearrangements involving the human MLL gene. A total of 760 MLL-rearranged biopsy samples obtained from 384 pediatric and 376 adult leukemia patients were characterized at the molecular level. The distribution of MLL breakpoints for clinical subtypes (acute lymphoblastic leukemia, acute myeloid leukemia, pediatric and adult) and fused translocation partner genes (TPGs) will be presented, including novel MLL fusion genes. Combined data of our study and recently published data revealed 104 different MLL rearrangements of which 64 TPGs are now characterized on the molecular level. Nine TPGs seem to be predominantly involved in genetic recombinations of MLL: AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, MLLT4/AF6, ELL, EPS15/AF1P, MLLT6/AF17 and SEPT6, respectively. Moreover, we describe for the first time the genetic network of reciprocal MLL gene fusions deriving from complex rearrangements.
Blood | 2009
Brian V. Balgobind; Susana C. Raimondi; Jochen Harbott; Martin Zimmermann; Todd A. Alonzo; Anne Auvrignon; H. Berna Beverloo; Myron Chang; Ursula Creutzig; Michael Dworzak; Erik Forestier; Brenda Gibson; Henrik Hasle; Christine J. Harrison; Nyla A. Heerema; Gertjan J. L. Kaspers; Anna Leszl; Nathalia Litvinko; Luca Lo Nigro; Akira Morimoto; Christine Perot; Rob Pieters; Dirk Reinhardt; Jeffrey E. Rubnitz; Franklin O. Smith; Jan Stary; Irina Stasevich; Sabine Strehl; Takashi Taga; Daisuke Tomizawa
Translocations involving chromosome 11q23 frequently occur in pediatric acute myeloid leukemia (AML) and are associated with poor prognosis. In most cases, the MLL gene is involved, and more than 50 translocation partners have been described. Clinical outcome data of the 11q23-rearranged subgroups are scarce because most 11q23 series are too small for meaningful analysis of subgroups, although some studies suggest that patients with t(9;11)(p22;q23) have a more favorable prognosis. We retrospectively collected outcome data of 756 children with 11q23- or MLL-rearranged AML from 11 collaborative groups to identify differences in outcome based on translocation partners. All karyotypes were centrally reviewed before assigning patients to subgroups. The event-free survival of 11q23/MLL-rearranged pediatric AML at 5 years from diagnosis was 44% (+/- 5%), with large differences across subgroups (11% +/- 5% to 92% +/- 5%). Multivariate analysis identified the following subgroups as independent prognostic predictors: t(1;11)(q21;q23) (hazard ratio [HR] = 0.1, P = .004); t(6;11)(q27;q23) (HR = 2.2, P < .001); t(10;11)(p12;q23) (HR = 1.5, P = .005); and t(10;11)(p11.2;q23) (HR = 2.5, P = .005). We could not confirm the favorable prognosis of the t(9;11)(p22;q23) subgroup. We identified large differences in outcome within 11q23/MLL-rearranged pediatric AML and novel subgroups based on translocation partners that independently predict clinical outcome. Screening for these translocation partners is needed for accurate treatment stratification at diagnosis.
Blood | 2008
Brian V. Balgobind; Pieter Van Vlierberghe; Ans van den Ouweland; H. Berna Beverloo; Joan N.R. Terlouw-Kromosoeto; Elisabeth R. van Wering; Dirk Reinhardt; Martin A. Horstmann; Gertjan J. L. Kaspers; Rob Pieters; C. Michel Zwaan; Marry M. van den Heuvel-Eibrink; Jules P.P. Meijerink
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations in the NF1 gene. Patients with NF1 have a higher risk to develop juvenile myelomonocytic leukemia (JMML) with a possible progression toward acute myeloid leukemia (AML). In an oligo array comparative genomic hybridization-based screening of 103 patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL) and 71 patients with MLL-rearranged AML, a recurrent cryptic deletion, del(17)(q11.2), was identified in 3 patients with T-ALL and 2 patients with MLL-rearranged AML. This deletion has previously been described as a microdeletion of the NF1 region in patients with NF1. However, our patients lacked clinical NF1 symptoms. Mutation analysis in 4 of these del(17)(q11.2)-positive patients revealed that mutations in the remaining NF1 allele were present in 3 patients, confirming its role as a tumor-suppressor gene in cancer. In addition, NF1 inactivation was confirmed at the RNA expression level in 3 patients tested. Since the NF1 protein is a negative regulator of the RAS pathway (RAS-GTPase activating protein), homozygous NF1 inactivation represent a novel type I mutation in pediatric MLL-rearranged AML and T-ALL with a predicted frequency that is less than 10%. NF1 inactivation may provide an additional proliferative signal toward the development of leukemia.
Blood | 2009
Iris H.I.M. Hollink; Marry M. van den Heuvel-Eibrink; Martin Zimmermann; Brian V. Balgobind; Susan T.C.J.M. Arentsen-Peters; Marielle Alders; Andre Willasch; Gertjan J. L. Kaspers; Jan Trka; André Baruchel; Siebold S.N. de Graaf; Ursula Creutzig; Rob Pieters; Dirk Reinhardt; C. Michel Zwaan
Wilms tumor 1 (WT1) mutations have recently been identified in approximately 10% of adult acute myeloid leukemia (AML) with normal cytogenetics (CN-AML) and are associated with poor outcome. Using array-based comparative genome hybridization in pediatric CN-AML samples, we detected a WT1 deletion in one sample. The other WT1 allele was mutated. This prompted us to further investigate the role of WT1 aberrations in childhood AML. Mutations were found in 35 of 298 (12%) diagnostic pediatric AML samples. In 19 of 35 (54%) samples, more than one WT1 aberration was found: 15 samples had 2 different mutations, 2 had a homozygous mutation, and 2 had a mutation plus a WT1 deletion. WT1 mutations clustered significantly in the CN-AML subgroup (22%; P < .001) and were associated with FLT3/ITD (43 vs 17%; P < .001). WT1 mutations conferred an independent poor prognostic significance (WT1 mutated vs wild-type patients: 5-year probability of overall survival [pOS] 35% vs 66%, P = .002; probability of event-free survival 22% vs 46%, P < .001; and cumulative incidence of relapse or regression 70% vs 44%, P < .001). Patients with both a WT1 mutation and a FLT3/ITD had a dismal prognosis (5-year pOS 21%). WT1 mutations occur at a significant rate in childhood AML and are a novel independent poor prognostic marker.
Haematologica | 2011
Brian V. Balgobind; Iris H.I.M. Hollink; Susan T.C.J.M. Arentsen-Peters; Martin Zimmermann; Jochen Harbott; H. Berna Beverloo; Anne R. M. von Bergh; Jacqueline Cloos; Gertjan J. L. Kaspers; Valerie de Haas; Zuzana Zemanova; Jan Stary; Jean-Michel Cayuela; André Baruchel; Ursula Creutzig; Dirk Reinhardt; Rob Pieters; C. Michel Zwaan; Marry M. van den Heuvel-Eibrink
Background Several studies of pediatric acute myeloid leukemia have described the various type-I or type-II aberrations and their relationship with clinical outcome. However, there has been no recent comprehensive overview of these genetic aberrations in one large pediatric acute myeloid leukemia cohort. Design and Methods We studied the different genetic aberrations, their associations and their impact on prognosis in a large pediatric acute myeloid leukemia series (n=506). Karyotypes were studied, and hotspot regions of NPM1, CEPBA, MLL, WT1, FLT3, N-RAS, K-RAS, PTPN11 and KIT were screened for mutations of available samples. The mutational status of all type-I and type-II aberrations was available in 330 and 263 cases, respectively. Survival analysis was performed in a subset (n=385) treated on consecutive acute myeloid leukemia Berlin-Frankfurt-Munster Study Group and Dutch Childhood Oncology Group treatment protocols. Results Genetic aberrations were associated with specific clinical characteristics, e.g. significantly higher diagnostic white blood cell counts in MLL-rearranged, WT1-mutated and FLT3-ITD-positive acute myeloid leukemia. Furthermore, there was a significant difference in the distribution of these aberrations between children below and above the age of two years. Non-random associations, e.g. KIT mutations with core-binding factor acute myeloid leukemia, and FLT3-ITD with t(15;17)(q22;q21), NPM1- and WT1-mutated acute myeloid leukemia, respectively, were observed. Multivariate analysis revealed a ‘favorable karyotype’, i.e. t(15;17)(q22;q21), t(8;21)(q22;q22) and inv(16)(p13q22)/t(16;16)(p13;q22). NPM1 and CEBPA double mutations were independent factors for favorable event-free survival. WT1 mutations combined with FLT3-ITD showed the worst outcome for 5-year overall survival (22±14%) and 5-year event-free survival (20±13%), although it was not an independent factor in multivariate analysis. Conclusions Integrative analysis of type-I and type-II aberrations provides an insight into the frequencies, non-random associations and prognostic impact of the various aberrations, reflecting the heterogeneity of pediatric acute myeloid leukemia. These aberrations are likely to guide the stratification of pediatric acute myeloid leukemia and may direct the development of targeted therapies.
Leukemia | 2011
Brian V. Balgobind; Christian M. Zwaan; Rob Pieters; M.M. van den Heuvel-Eibrink
Translocations involving the mixed-lineage leukemia (MLL) gene, localized at 11q23, comprise 15 to 20% of all pediatric acute myeloid leukemia (AML) cases. This review summarizes current knowledge about the etiology, biology, clinical characteristics and differences in outcome in MLL-rearranged pediatric AML. Furthermore, we discuss the role of cooperating events in MLL-rearranged pediatric AML, and future therapeutic strategies to improve outcome. We conclude that MLL-rearranged pediatric AML is a heterogeneous disease, and prognosis depends on various factors, for example, translocation partner, age, WBC and additional cytogenetic aberrations. The relationship of outcome with specific translocation partners requires that they be searched for in the diagnostic work-up of AML. To achieve further improvements in outcome, unraveling the biology of MLL-rearranged pediatric AML is warranted.
Haematologica | 2011
Brian V. Balgobind; Marry M. van den Heuvel-Eibrink; Renee X. De Menezes; Dirk Reinhardt; Iris H.I.M. Hollink; Susan T. J. C. M. Arentsen-Peters; Elisabeth R. van Wering; Gertjan J. L. Kaspers; Jacqueline Cloos; Evelien S.J.M. de Bont; Jean-Michel Cayuela; André Baruchel; Claus Meyer; Rolf Marschalek; Jan Trka; Jan Stary; H. Berna Beverloo; Rob Pieters; C. Michel Zwaan; Monique L. den Boer
Background Pediatric acute myeloid leukemia is a heterogeneous disease characterized by non-random genetic aberrations related to outcome. The genetic subtype is currently detected by different diagnostic procedures which differ in success rate and/or specificity. Design and Methods We examined the potential of gene expression profiles to classify pediatric acute myeloid leukemia. Gene expression microarray data of 237 children with acute myeloid leukemia were collected and a double-loop cross validation approach was used to generate a subtype-predictive gene expression profile in the discovery cohort (n=157) which was then tested for its true predictive value in the independent validation cohort (n=80). The classifier consisted of 75 probe sets, representing the top 15 discriminating probe sets for MLL-rearranged, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17)(q21;q22) and t(7;12)(q36;p13)-positive acute myeloid leukemia. Results These cytogenetic subtypes represent approximately 40% of cases of pediatric acute myeloid leukemia and were predicted with 92% and 99% accuracy in the discovery and independent validation cohort, respectively. However, for NPM1, CEBPA, MLL(-PTD), FLT3(-ITD), KIT, PTPN11 and N/K-RAS gene expression signatures had limited predictive value. This may be caused by a limited frequency of these mutations and by underlying cytogenetics. This latter is exemplified by the fact that different gene expression signatures were discovered for FLT3-ITD in patients with normal cytogenetics and in those with t(15;17)(q21;q22)-positive acute myeloid leukemia, which pointed to HOXB-upregulation being specific for FLT3-ITD+ cytogenetically normal acute myeloid leukemia. Conclusions In conclusion, gene expression profiling correctly predicted the most prevalent cytogenetic subtypes of pediatric acute myeloid leukemia with high accuracy. In clinical practice, this gene expression signature may replace multiple diagnostic tests for approximately 40% of pediatric acute myeloid leukemia cases whereas only for the remaining cases (predicted as ‘acute myeloid leukemia-other’) are additional tests indicated. Moreover, the discriminative genes reveal new insights into the biology of acute myeloid leukemia subtypes that warrants follow-up as potential targets for new therapies.
Leukemia | 2010
Brian V. Balgobind; S Lugthart; Iris H.I.M. Hollink; Susan T. J. C. M. Arentsen-Peters; E. R. Van Wering; S S N de Graaf; Dirk Reinhardt; Ursula Creutzig; Gertjan J. L. Kaspers; E. S. J. M. de Bont; Jan Stary; Jan Trka; Martin Zimmermann; H B Beverloo; Rob Pieters; Ruud Delwel; Christian M. Zwaan; M.M. van den Heuvel-Eibrink
Overexpression of the ecotropic virus integration-1 (EVI1) gene (EVI1+), localized at chromosome 3q26, is associated with adverse outcome in adult acute myeloid leukemia (AML). In pediatric AML, 3q26 abnormalities are rare, and the role of EVI1 is unknown. We studied 228 pediatric AML samples for EVI1+ using gene expression profiling and RQ-PCR. EVI1+ was found in 20/213 (9%) of children with de novo AML, and in 4/8 with secondary AML. It was predominantly found in MLL-rearranged AML (13/47), monosomy 7 (2/3), or FAB M6/7 (6/10), and mutually exclusive with core-binding factor AML, t(15;17), and NPM1 mutations. Fluorescent in situ hybridization (FISH) was performed to detect cryptic 3q26 abnormalities. However, none of the EVI1+ patients harbored structural 3q26 alterations. Although significant differences in 4 years pEFS for EVI1+ and EVI1− pediatric AML were observed (28%±11 vs 44%±4, P=0.04), multivariate analysis did not identify EVI1+ as an independent prognostic factor. We conclude that EVI1+ can be found in ∼10% of pediatric AML. Although EVI1+ was not an independent prognostic factor, it was predominantly found in subtypes of pediatric AML that are related with an intermediate to unfavorable prognosis. Further research should explain the role of EVI1+ in disease biology in these cases. Remarkably, no 3q26 abnormalities were identified in EVI1+ pediatric AML.
Haematologica | 2011
Iris H.I.M. Hollink; Marry M. van den Heuvel-Eibrink; Susan T.C.J.M. Arentsen-Peters; Martin Zimmermann; Justine K. Peeters; Brian V. Balgobind; Edwin Sonneveld; Gertjan J. L. Kaspers; Eveline S. J. M. de Bont; Jan Trka; André Baruchel; Ursula Creutzig; Rob Pieters; Dirk Reinhardt; C. Michel Zwaan
Background Dysfunctioning of CCAAT/enhancer binding protein α (C/EBPα) in acute myeloid leukemia can be caused, amongst others, by mutations in the encoding gene (CEBPA) and by promoter hypermethylation. CEBPA-mutated acute myeloid leukemia is associated with a favorable outcome, but this may be restricted to the case of double mutations in CEBPA in adult acute myeloid leukemia. In pediatric acute myeloid leukemia, data on the impact of these mutations are limited to one series, and data on promoter hypermethylation are lacking. Our objective was to investigate the characteristics, gene expression profiles and prognostic impact of the different CEBPA aberrations in pediatric acute myeloid leukemia. Design and Methods We screened a large pediatric cohort (n=252) for CEBPA single and double mutations by direct sequencing, and for promoter hypermethylation by methylation-specific polymerase chain reaction. Furthermore, we determined the gene-expression profiles (Affymetrix HGU133 plus 2.0 arrays) of this cohort (n=237). Results Thirty-four mutations were identified in 20 out of the 252 cases (7.9%), including 14 double-mutant and 6 single-mutant cases. CEBPA double mutations conferred a significantly better 5-year overall survival compared with single mutations (79% versus 25%, respectively; P=0.04), and compared with CEBPA wild-type acute myeloid leukemia excluding core-binding factor cases (47%; P=0.07). Multivariate analysis confirmed that the double mutations were an independent favorable prognostic factor for survival (hazard ratio 0.23, P=0.04). The combination of screening for promoter hypermethylation and gene expression profiling identified five patients with silenced CEBPA, of whom four cases relapsed. All cases characteristically expressed T-lymphoid markers. Moreover, unsupervised clustering of gene expression profiles showed a clustering of CEBPA double-mutant and silenced cases, pointing towards a common hallmark of abrogated C/EBPα-functioning in these acute myeloid leukemias. Conclusions We showed the independent favorable outcome of patients with CEBPA double-mutant acute myeloid leukemia in a large pediatric series. This molecular marker may, therefore, improve risk-group stratification in pediatric acute myeloid leukemia. For the first time, CEBPA-silenced cases are suggested to confer a poor outcome in pediatric acute myeloid leukemia, indicating that further investigation of this aberration is needed. Furthermore, clustering of gene expression profiles provided insight into the biological similarities and diversities of the different aberrations in CEBPA in pediatric acute myeloid leukemia.
Journal of Clinical Oncology | 2010
Iris H.I.M. Hollink; Marry M. van den Heuvel-Eibrink; Martin Zimmermann; Brian V. Balgobind; Susan T.C.J.M. Arentsen-Peters; Marielle Alders; Andre Willasch; Gertjan J. L. Kaspers; Jan Trka; André Baruchel; Ursula Creutzig; Rob Pieters; Dirk Reinhardt; C. Michel Zwaan
TO THE EDITOR: With great interest, we read the article by Damm et al, in which the authors describe the prognostic impact of the single nucleotide polymorphism (SNP) rs16754 located in the mutational hotspot of the WT1 gene in 249 adults with cytogenetically normal acute myeloid leukemia (CN-AML). They found that the presence of one or two minor alleles (WT1/WT1) of SNP rs16754 independently predicted a favorable outcome for these patients, who were intensively treated on two clinical trials (AML SHG 0199 and 0295). This effect was most prominent for high-risk patients (defined as FLT3 internal tandem duplication [ITD] –positive and/or NPM1 wild type). The authors hypothesize that the minor allele of this synonymous SNP might be associated with increased drug sensitivity. No prognostic impact of WT1 mutations was observed, which is in contrast with most published reports in adult CN-AML. Furthermore, WT1 mRNA expression levels did not predict outcome. Previous reports on the impact of WT1 expression at diagnosis in acute myeloid leukemia (AML) described conflicting results.