Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Wheelwright is active.

Publication


Featured researches published by Brian Wheelwright.


IEEE Journal of Photovoltaics | 2015

PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters

Zhengshan J. Yu; Kathryn C. Fisher; Brian Wheelwright; Roger Angel; Zachary C. Holman

As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flat-plate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%-nearing the 29.4% detailed-balance efficiency limit-and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangement of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. We consider two case studies-a PV cell located at the focus of the PVMirror to form a four-terminal PV-PV tandem, and a thermal receiver located at the focus to form a PV-CSP (concentrating solar thermal power) tandem-and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV-PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.


Optics Express | 2014

Dish-based high concentration PV system with Köhler optics

Blake M. Coughenour; Thomas Stalcup; Brian Wheelwright; Andrew Geary; Kimberly Hammer; Roger Angel

We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Köhler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system.


Applied Optics | 2016

Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion

Shelby Vorndran; Benjamin D. Chrysler; Brian Wheelwright; Roger Angel; Zachary C. Holman; Raymond K. Kostuk

This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.


High and Low Concentrator Systems for Solar Electric Applications VII | 2012

On-sun performance of an improved dish-based HCPV system

Thomas Stalcup; J. Roger P. Angel; Blake M. Coughenour; Brian Wheelwright; Tom Connors; Warren B. Davison; David Lesser; Justin Elliott; John Schaefer

The University of Arizona has developed a new dish-based High Concentration Photovoltaic (HCPV) system which is in the process of being commercialized by REhnu, Inc. The basic unit uses a paraboloidal glass reflector 3.1 m x 3.1 m square to bring sunlight to a high power point focus at a concentration of ~20,000x. A unique optical system at the focus reformats the concentrated sunlight so as to uniformly illuminate 36 triple junction cells at 1200x geometric concentration1. The relay optics and cells are integrated with an active cooling system in a self-contained Power Conversion Unit (PCU) suspended above the dish reflector. Only electrical connections are made to the PCU as the active cooling system within is completely sealed. Eight of these reflector/PCU units can be mounted on a single two axis tracking structure2. Our 1st generation prototype reflector/PCU unit consistently generated 2.2 kW of power normalized to 1kW/m2 DNI in over 200 hours of on-sun testing in 20113. Here, we present on-sun performance results for our 2nd generation prototype reflector/PCU unit, which has been in operation since June 2012. This improved system consistently generates 2.7 kW of power normalized to 1kW/m2 DNI and has logged over 100 hours of on-sun testing. This system is currently operating at28% DC net system efficiency with an operating cell temperature of only 20°C above ambient. Having proven this system concept, work on our 3rd generation prototype is underway with a focus on manufacturability, lower cost, and DC efficiency target of 32% or better.


High and Low Concentrator Systems for Solar Energy Applications IX | 2014

Shaping solar concentrator mirrors by radiative heating

Roger Angel; Thomas Stalcup; Brian Wheelwright; Stephen Warner; Kimberly Hammer; Mira Frenkel

Here we report a newly developed method for gravity sag molding of large glass solar reflectors, 1.65 m x 1.65 m square, with either line or point focus, and short focal length. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The tests reported here have been made in a custom batch furnace, with high power radiative heating to soften the glass for slumping. The mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to <1%. Optical metrology of replicas made with the system has been carried out with a novel test using a linear array of coaligned lasers translated in a perpendicular direction across the reflector while the deviation of each beam from perfect focus is measured. Slopes measured over an array of 4000 points show an absolute accuracy of <0.3 mrad rms in sx and sy. The most accurate replicas we have made are from a 2.6 m2 point focus mold, showing slope errors in x and y of 1.0 mrad rms. The slump cycle, starting with rigid flat glass at 500C, uses a 350 kW burst of radiative heating for 200 seconds, followed by radiative and convective cooling.


Applied Optics | 2016

Designing spectrum-splitting dichroic filters to optimize current-matched photovoltaics

Alexander Miles; Byron Cocilovo; Brian Wheelwright; Wei Pan; Doug Tweet; Robert A. Norwood

We have developed an approach for designing a dichroic coating to optimize performance of current-matched multijunction photovoltaic cells while diverting unused light. By matching the spectral responses of the photovoltaic cells and current matching them, substantial improvement to system efficiencies is shown to be possible. A design for use in a concentrating hybrid solar collector was produced by this approach, and is presented. Materials selection, design methodology, and tilt behavior on a curved substrate are discussed.


Imaging and Applied Optics 2015 (2015), paper FT4B.5 | 2015

Freeform Illumination Design with Cartograms

Brian Wheelwright; Roger Angel

Freeform illumination optics allow highly prescribed irradiance control. Calculating a suitable source-to-target map which results in a continuous surface remains a computational challenge. We produce source-to-target maps using a modified cartogram generation technique.


International Optical Design Conference 2014, IODC 2014 | 2014

Freeform lens design to achieve 1000X solar concentration with a parabolic trough reflector

Brian Wheelwright; Roger Angel; Blake M. Coughenour

Line-focus parabolic trough mirrors for solar thermal generation cannot produce the high concentration required for concentrating photovoltaic (CPV) systems. We describe a freeform lens array with toroidal symmetry which intercepts the low-concentration line focus to produce a series of elongated, high-concentration foci. The design employs 2D Kӧhler illumination to improve the acceptance angle in one direction. The two-stage concentrator has 1000X average geometric concentration with an acceptance angle of +/-1.49° in the azimuthal direction and +/-0.29° in the elevation direction. Preliminary results of a prototype roll-forming process are shown in thermoplastics and B270 glass.


International Optical Design Conference 2014, IODC 2014 | 2014

Tracking-Integrated Optics: Applications in Solar Concentration

Brian Wheelwright; Roger Angel; Blake M. Coughenour

Conventional concentrating photovoltaic (CPV) systems track the sun with high precision dual-axis trackers. The emergent field of tracking-integrated optics has the potential to simplify the mechanics of CPV systems by loosening or eliminating the need for dual-axis tracking. In a tracking-integrated scheme, external module tracking is complemented or entirely replaced by miniature tracking within the module. This internal tracking-integration may take the form of active small-motion translation, rotation of arrayed optics, or by passive material property changes induced by the concentrated light. These methods are briefly reviewed. An insolation weighting model is presented which will aid in the design of tracking-integrated optics by quantifying the tradeoff between angular operation range and annual sunlight collection. We demonstrate that when tracking-integrated optics are used to complement external module tracking about a horizontal, North-South oriented axis, truncating the operational range may be advantageous. At Tucson AZ latitude (32.2°N), 15.6% of the angular range may be truncated while only sacrificing 3.6% of the annual insolation. We show that modules tracked about a polar-aligned axis are poorly-suited for truncation.


High and Low Concentrator Systems for Solar Energy Applications IX | 2014

Freeform solar concentrator with a highly asymmetric acceptance cone

Brian Wheelwright; J. Roger P. Angel; Blake M. Coughenour; Kimberly Hammer

A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).

Collaboration


Dive into the Brian Wheelwright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Ward

University of Arizona

View shared research outputs
Researchain Logo
Decentralizing Knowledge