Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian Yanny is active.

Publication


Featured researches published by Brian Yanny.


The Astrophysical Journal | 2005

DETECTION OF THE BARYON ACOUSTIC PEAK IN THE LARGE-SCALE CORRELATION FUNCTION OF SDSS LUMINOUS RED GALAXIES

Daniel J. Eisenstein; Idit Zehavi; David W. Hogg; Roman Scoccimarro; Michael R. Blanton; Robert C. Nichol; Ryan Scranton; Hee-Jong Seo; Max Tegmark; Zheng Zheng; Scott F. Anderson; James Annis; Neta A. Bahcall; J. Brinkmann; Scott Burles; Francisco J. Castander; A. Connolly; István Csabai; Mamoru Doi; Masataka Fukugita; Joshua A. Frieman; Karl Glazebrook; James E. Gunn; Johnn Hendry; Gregory S. Hennessy; Zeljko Ivezic; Stephen M. Kent; Gillian R. Knapp; Huan Lin; Yeong Shang Loh

We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72h −3 Gpc 3 over 3816 square degrees and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h −1 Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density mh 2 to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find m = 0.273 ±0.025+0.123(1+ w0)+0.137K. Including the CMB acoustic scale, we find that the spatial curvature is K = −0.010 ± 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties. Subject headings: cosmology: observations — large-scale structure of the universe — distance scale — cosmological parameters — cosmic microwave background — galaxies: elliptical and lenticular, cD


The Astrophysical Journal | 2004

The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey

Max Tegmark; Michael R. Blanton; Michael A. Strauss; Fiona Hoyle; David J. Schlegel; Roman Scoccimarro; Michael S. Vogeley; David H. Weinberg; Idit Zehavi; Andreas A. Berlind; Tamas Budavari; A. Connolly; Daniel J. Eisenstein; Douglas P. Finkbeiner; Joshua A. Frieman; James E. Gunn; A. Hamilton; Lam Hui; Bhuvnesh Jain; David E. Johnston; S. Kent; Huan Lin; Reiko Nakajima; Robert C. Nichol; Jeremiah P. Ostriker; Adrian Pope; Ryan Scranton; Uros Seljak; Ravi K. Sheth; Albert Stebbins

We measure the large-scale real-space power spectrum P(k) using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 square degrees with mean redshift z~0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h/Mpc < k < 0.3h/Mpc. We pay particular attention to modeling, quantifying and correcting for potential systematic errors, nonlinear redshift distortions and the artificial red-tilt caused by luminosity-dependent bias. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k<0.1h/Mpc, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the WMAP satellite. As a simple characterization of the data, our measurements are well fit by a flat scale-invariant adiabatic cosmological model with h Omega_m =0.201+/- 0.017 and L* galaxy sigma_8=0.89 +/- 0.02 when fixing the baryon fraction Omega_b/Omega_m=0.17 and the Hubble parameter h=0.72; cosmological interpretation is given in a companion paper.We measure the large-scale real-space power spectrum P(k) by using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 effective square degrees with mean redshift z ≈ 0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h Mpc-1 < k < 0.3 h Mpc-1. We pay particular attention to modeling, quantifying, and correcting for potential systematic errors, nonlinear redshift distortions, and the artificial red-tilt caused by luminosity-dependent bias. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k < 0.1 h Mpc-1, thereby making our results useful for precision measurements of cosmological parameters in conjunction with data from other experiments such as the Wilkinson Microwave Anisotropy Probe satellite. The power spectrum is not well-characterized by a single power law but unambiguously shows curvature. As a simple characterization of the data, our measurements are well fitted by a flat scale-invariant adiabatic cosmological model with h Ωm = 0.213 ± 0.023 and σ8 = 0.89 ± 0.02 for L* galaxies, when fixing the baryon fraction Ωb/Ωm = 0.17 and the Hubble parameter h = 0.72; cosmological interpretation is given in a companion paper.


Physical Review D | 2006

Cosmological constraints from the SDSS luminous red galaxies

Max Tegmark; Daniel J. Eisenstein; Michael A. Strauss; David H. Weinberg; Michael R. Blanton; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; A. Hamilton; Gillian R. Knapp; Robert C. Nichol; Jeremiah P. Ostriker; Nikhil Padmanabhan; Will J. Percival; David J. Schlegel; Donald P. Schneider; Roman Scoccimarro; Uros Seljak; Hee-Jong Seo; M. E. C. Swanson; Alexander S. Szalay; Michael S. Vogeley; Jaiyul Yoo; Idit Zehavi; Kevork N. Abazajian; Scott F. Anderson; James Annis; Neta A. Bahcall; Bruce A. Bassett; Andreas A. Berlind

We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.


The Astronomical Journal | 2001

Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample

Daniel J. Eisenstein; James Annis; James E. Gunn; Alexander S. Szalay; Andrew J. Connolly; Robert C. Nichol; Neta A. Bahcall; Mariangela Bernardi; Scott Burles; Francisco J. Castander; Masataka Fukugita; David W. Hogg; Željko Ivezić; Gillian R. Knapp; Robert H. Lupton; Vijay K. Narayanan; Marc Postman; Daniel E. Reichart; Michael W. Richmond; Donald P. Schneider; David J. Schlegel; Michael A. Strauss; Mark SubbaRao; D. L. Tucker; Daniel E. Vanden Berk; Michael S. Vogeley; David H. Weinberg; Brian Yanny

We describe the target selection and resulting properties of a spectroscopic sample of luminous red galaxies (LRGs) from the imaging data of the Sloan Digital Sky Survey (SDSS). These galaxies are selected on the basis of color and magnitude to yield a sample of luminous intrinsically red galaxies that extends fainter and farther than the main flux-limited portion of the SDSS galaxy spectroscopic sample. The sample is designed to impose a passively evolving luminosity and rest-frame color cut to a redshift of 0.38. Additional, yet more luminous red galaxies are included to a redshift of ~0.5. Approximately 12 of these galaxies per square degree are targeted for spectroscopy, so the sample will number over 100,000 with the full survey. SDSS commissioning data indicate that the algorithm efficiently selects luminous (M^+_g ≈ -21.4) red galaxies, that the spectroscopic success rate is very high, and that the resulting set of galaxies is approximately volume limited out to z = 0.38. When the SDSS is complete, the LRG spectroscopic sample will fill over 1 h^(-3) Gpc^3 with an approximately homogeneous population of galaxies and will therefore be well suited to studies of large-scale structure and clusters out to z = 0.5.


The Astrophysical Journal | 2007

Cats and Dogs, Hair and a Hero: A Quintet of New Milky Way Companions*

Vasily Belokurov; Daniel B. Zucker; N. W. Evans; Jan Kleyna; S. E. Koposov; Simon T. Hodgkin; M. J. Irwin; G. Gilmore; M. I. Wilkinson; M. Fellhauer; D. M. Bramich; Paul C. Hewett; S. Vidrih; J. T. A. de Jong; J. A. Smith; H.-W. Rix; Eric F. Bell; R. F. G. Wyse; Heidi Jo Newberg; P. A. Mayeur; Brian Yanny; Constance M. Rockosi; Oleg Y. Gnedin; Donald P. Schneider; Timothy C. Beers; John C. Barentine; Howard J. Brewington; J. Brinkmann; Mike Harvanek; Scott J. Kleinman

We present five new satellites of the Milky Way discovered in Sloan Digital Sky Survey (SDSS) imaging data, four of which were followed-up with either the Subaru or the Isaac Newton Telescopes. They include four probable new dwarf galaxies--one each in the constellations of Coma Berenices, Canes Venatici, Leo and Hercules--together with one unusually extended globular cluster, Segue 1. We provide distances, absolute magnitudes, half-light radii and color-magnitude diagrams for all five satellites. The morphological features of the color-magnitude diagrams are generally well described by the ridge line of the old, metal-poor globular cluster M92. In the last two years, a total of ten new Milky Way satellites with effective surface brightness {mu}{sub v} {approx}> 28 mag arcsec{sup -2} have been discovered in SDSS data. They are less luminous, more irregular and appear to be more metal-poor than the previously-known nine Milky Way dwarf spheroidals. The relationship between these objects and other populations is discussed. We note that there is a paucity of objects with half-light radii between {approx} 40 pc and {approx} 100 pc. We conjecture that this may represent the division between star clusters and dwarf galaxies.


The Astrophysical Journal | 2002

The Ghost of Sagittarius and Lumps in the Halo of the Milky Way

Heidi Jo Newberg; Brian Yanny; Constance M. Rockosi; Eva K. Grebel; Hans-Walter Rix; J. Brinkmann; István Csabai; Greg Hennessy; Robert B. Hindsley; Rodrigo A. Ibata; Zeljko Ivezic; D. Q. Lamb; E. Thomas Nash; Michael Odenkirchen; Heather A. Rave; Donald P. Schneider; Andrea Stolte; Donald G. York

We identify new structures in the halo of the Milky Way from positions, colors, and magnitudes of five million stars detected in the Sloan Digital Sky Survey. Most of these stars are within 126 of the celestial equator. We present color-magnitude diagrams (CMDs) for stars in two previously discovered, tidally disrupted structures. The CMDs and turnoff colors are consistent with those of the Sagittarius dwarf galaxy, as had been predicted. In one direction, we are even able to detect a clump of red stars, similar to that of the Sagittarius dwarf, from stars spread across 110 deg2 of sky. Focusing on stars with the colors of F turnoff objects, we identify at least five additional overdensities of stars. Four of these may be pieces of the same halo structure, which would cover a region of the sky at least 40° in diameter, at a distance of 11 kpc from the Sun (18 kpc from the center of the Galaxy). The turnoff is significantly bluer than that of thick-disk stars, yet the stars lie closer to the Galactic plane than a power-law spheroid predicts. We suggest two models to explain this new structure. One possibility is that this new structure could be a new dwarf satellite of the Milky Way, hidden in the Galactic plane and in the process of being tidally disrupted. The other possibility is that it could be part of a disklike distribution of stars which is metal-poor, with a scale height of approximately 2 kpc and a scale length of approximately 10 kpc. The fifth overdensity, which is 20 kpc away, is some distance from the Sagittarius dwarf streamer orbit and is not associated with any known Galactic structure. We have tentatively identified a sixth overdensity in the halo. If this sixth structure is instead part of a smooth distribution of halo stars (the spheroid), then the spheroid must be very flattened, with axial ratio q = 0.5. It is likely that there are many smaller streams of stars in the Galactic halo.


The Astrophysical Journal | 2002

Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

Idit Zehavi; Michael R. Blanton; Joshua A. Frieman; David H. Weinberg; Hounjun J. Mo; Michael A. Strauss; Scott F. Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; John W. Briggs; J. Brinkmann; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Julianne J. Dalcanton; Scott Dodelson; Mamoru Doi; Daniel J. Eisenstein; Michael L. Evans; Douglas P. Finkbeiner; Scott D. Friedman; Masataka Fukugita; James E. Gunn; Greg Hennessy; Robert B. Hindsley; Željko Ivezić; Stephen B. H. Kent

We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700 km s-1 ≤ cz ≤ 39,000 km s-1, distributed in several long but narrow (25-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, fingers-of-God distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r) = (r/6.1 ± 0.2 h-1 Mpc)-1.75±0.03, for 0.1 h-1 Mpc ≤ r ≤ 16 h-1 Mpc. The galaxy pairwise velocity dispersion is σ12 ≈ 600 ± 100 km s-1 for projected separations 0.15 h-1 Mpc ≤ rp ≤ 5 h-1 Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r 10 h-1 Mpc: subsamples with absolute magnitude ranges centered on M* - 1.5, M*, and M* + 1.5 have real-space correlation functions that are parallel power laws of slope ≈-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.


The Astrophysical Journal | 2008

THE MILKY WAY'S CIRCULAR VELOCITY CURVE TO 60 kpc AND AN ESTIMATE OF THE DARK MATTER HALO MASS FROM THE KINEMATICS OF ∼2400 SDSS BLUE HORIZONTAL-BRANCH STARS

X. X. Xue; H.-W. Rix; Gang Zhao; P. Re Fiorentin; Thorsten Naab; Matthias Steinmetz; F. C. van den Bosch; Timothy C. Beers; Young Sun Lee; Eric F. Bell; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Ronald Wilhelm; Xi Kang; M. C. Smith; Donald P. Schneider

We derive new constraints on the mass of the Milky Ways dark matter halo, based on 2401 rigorously selected blue horizontal-branch halo stars from SDSS DR6. This sample enables construction of the full line-of-sight velocity distribution at different galactocentric radii. To interpret these distributions, we compare them to matched mock observations drawn from two different cosmological galaxy formation simulations designed to resemble the Milky Way. This procedure results in an estimate of the Milky Ways circular velocity curve to ~60 kpc, which is found to be slightly falling from the adopted value of 220 km s?1 at the Suns location, and implies -->M( Vcir(r) , derived in statistically independent bins, is found to be consistent with the expectations from an NFW dark matter halo with the established stellar mass components at its center. If we assume that an NFW halo profile of characteristic concentration holds, we can use the observations to estimate the virial mass of the Milky Ways dark matter halo, -->Mvir = 1.0+ 0.3?0.2 ? 1012 M?, which is lower than many previous estimates. We have checked that the particulars of the cosmological simulations are unlikely to introduce systematics larger than the statistical uncertainties. This estimate implies that nearly 40% of the baryons within the virial radius of the Milky Ways dark matter halo reside in the stellar components of our Galaxy. A value for -->Mvir of only ~ -->1 ? 1012 M? also (re)opens the question of whether all of the Milky Ways satellite galaxies are on bound orbits.


The Astronomical Journal | 2001

The Luminosity Function of Galaxies in SDSS Commissioning Data

Michael R. Blanton; Julianne J. Dalcanton; Daniel J. Eisenstein; Jon Loveday; Michael A. Strauss; Mark SubbaRao; David H. Weinberg; John Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; J. Brinkmann; Robert J. Brunner; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Mamoru Doi; Douglas P. Finkbeiner; Scott D. Friedman; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; Gregory S. Hennessy; Robert B. Hindsley; David W. Hogg; Takashi Ichikawa; Željko Ivezić; Stephen M. Kent

In the course of its commissioning observations, the Sloan Digital Sky Survey (SDSS) has produced one of the largest redshift samples of galaxies selected from CCD images. Using 11,275 galaxies complete to r* \ 17.6 over 140 deg2, we compute the luminosity function of galaxies in the r* band over a range (for h \ 1). The result is well-described by a Schechter function with parameters [23 \ M rp \ [16 h3 Mpc~3,


The Astronomical Journal | 2006

The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3

Gordon T. Richards; Michael A. Strauss; Xiaohui Fan; Patrick B. Hall; Sebastian Jester; Donald P. Schneider; Daniel E. Vanden Berk; Chris Stoughton; Scott F. Anderson; Robert J. Brunner; Jim Gray; James E. Gunn; Željko Ivezić; Margaret K. Kirkland; Gillian R. Knapp; Jon Loveday; Avery Meiksin; Adrian Pope; Alexander S. Szalay; Anirudda R. Thakar; Brian Yanny; Donald G. York; J. C. Barentine; Howard J. Brewington; J. Brinkmann; Masataka Fukugita; Michael Harvanek; Stephen M. Kent; S. J. Kleinman; Jurek Krzesinski

We determine the number counts and z = 0-5 luminosity function for a well-defined, homogeneous sample of quasars from the Sloan Digital Sky Survey (SDSS). We conservatively define the most uniform statistical sample possible, consisting of 15,343 quasars within an effective area of 1622 deg2 that was derived from a parent sample of 46,420 spectroscopically confirmed broad-line quasars in the 5282 deg2 of imaging data from SDSS Data Release 3. The sample extends from i = 15 to 19.1 at z 3 and to i = 20.2 for z 3. The number counts and luminosity function agree well with the results of the Two Degree Field QSO Redshift Survey (2QZ) at redshifts and luminosities at which the SDSS and 2QZ quasar samples overlap, but the SDSS data probe to much higher redshifts than does the 2QZ sample. The number density of luminous quasars peaks between redshifts 2 and 3, although uncertainties in the selection function in this range do not allow us to determine the peak redshift more precisely. Our best-fit model has a flatter bright-end slope at high redshift than at low redshift. For z < 2.4 the data are best fit by a redshift-independent slope of ? = -3.1 [?(L) ? L?]. Above z = 2.4 the slope flattens with redshift to ? -2.37 at z = 5. This slope change, which is significant at the 5 ? level, must be accounted for in models of the evolution of accretion onto supermassive black holes.

Collaboration


Dive into the Brian Yanny's collaboration.

Top Co-Authors

Avatar

Heidi Jo Newberg

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Donald P. Schneider

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy C. Beers

Joint Institute for Nuclear Astrophysics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge