Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brianna C. Thompson is active.

Publication


Featured researches published by Brianna C. Thompson.


Biomaterials | 2009

Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons.

Rachael T. Richardson; Andrew K. Wise; Brianna C. Thompson; Brianna O. Flynn; Patrick J. Atkinson; Nicole J. Fretwell; James B. Fallon; Gordon G. Wallace; Robert K. Shepherd; Graeme M. Clark; Stephen O'Leary

Sensorineural hearing loss is associated with gradual degeneration of spiral ganglion neurons (SGNs), compromising hearing outcomes with cochlear implant use. Combination of neurotrophin delivery to the cochlea and electrical stimulation from a cochlear implant protects SGNs, prompting research into neurotrophin-eluting polymer electrode coatings. The electrically conducting polypyrrole/para-toluene sulfonate containing neurotrophin-3 (Ppy/pTS/NT3) was applied to 1.7 mm2 cochlear implant electrodes. Ppy/pTS/NT3-coated electrode arrays stored 2 ng NT3 and released 0.1 ng/day with electrical stimulation. Guinea pigs were implanted with Ppy/pTS or Ppy/pTS/NT3 electrode arrays two weeks after deafening via aminoglycosides. The electrodes of a subgroup of these guinea pigs were electrically stimulated for 8 h/day for 2 weeks. There was a loss of SGNs in the implanted cochleae of guinea pigs with Ppy/pTS-coated electrodes indicative of electrode insertion damage. However, guinea pigs implanted with electrically stimulated Ppy/pTS/NT3-coated electrodes had lower electrically-evoked auditory brainstem response thresholds and greater SGN densities in implanted cochleae compared to non-implanted cochleae and compared to animals implanted with Ppy/pTS-coated electrodes (p<0.05). Ppy/pTS/NT3 did not exacerbate fibrous tissue formation and did not affect electrode impedance. Drug-eluting conducting polymer coatings on cochlear implant electrodes present a clinically viable method to promote preservation of SGNs without adversely affecting the function of the cochlear implant.


The FASEB Journal | 2007

The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures

Justin J. Yerbury; Stephen Poon; Sarah Meehan; Brianna C. Thompson; Janet R. Kumita; Christopher M. Dobson; Mark R. Wilson

Clusterin is an extracellular chaperone present in all disease‐associated extracellular amyloid deposits, but its roles in amyloid formation and protein deposition in vivo are poorly understood. The current study initially aimed to characterize the effects of clusterin on amyloid formation in vitro by a panel of eight protein substrates. Two of the substrates (Alzheimers beta peptide and a PI3‐SH3 domain) were then used in further experiments to examine the effects of clusterin on amyloid cytotoxicity and to probe the mechanism of clusterin action. We show that clusterin exerts potent effects on amyloid formation, the nature and extent of which vary greatly with the clusterin: substrate ratio, and provide evidence that these effects are exerted via interactions with prefibrillar species that share common structural features. Proamyloido‐genic effects of clusterin appear to be restricted to conditions in which the substrate protein is present at a very large molar excess;under these same conditions, clusterin coincorporates with substrate protein into insoluble aggregates. However, when clusterin is present at much higher but still substoichiometric levels (e.g., a molar ratio of clusterin:substrate = 1:10), it potently inhibits amyloid formation and provides substantial cytoprotection. These findings suggest that clus‐terin is an important element in the control of extracellular protein misfolding.—Yerbury, J. J., Poon, S., Meehan, S., Thompson, B., Kumita, J. R., Dobson, C. M., Wilson, M. R. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 21, 2312–2322 (2007)


Journal of Controlled Release | 2010

Conducting polymers, dual neurotrophins and pulsed electrical stimulation — Dramatic effects on neurite outgrowth

Brianna C. Thompson; Rachael T. Richardson; Simon E. Moulton; Alison Evans; Stephen O'Leary; Graeme M. Clark; Gordon G. Wallace

In this study the synergistic effect of delivering two neurotrophins simultaneously to encourage neuron survival and neurite elongation was explored. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were incorporated into polypyrrole (PPy) during electrosynthesis and the amounts incorporated and released were determined using iodine-125 ((125)I) radio-labelled neurotrophins. Neurite outgrowth from cochlear neural explants grown on the conducting polymer was equivalent to that on tissue culture plastic but significantly improved with the incorporation of NT-3 and BDNF. Neurite outgrowth from explants grown on polymers containing both NT-3 and BDNF showed significant improvement over PPy doped only with NT-3, due to the synergistic effect of both neurotrophins. Neurite outgrowth was significantly improved when the polymer containing both neurotrophins was electrically stimulated. It is envisaged that when applied to the cochlear implant, these conducting and novel polymer films will provide a biocompatible substrate for storage and release of neurotrophins to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.


Advanced Materials | 2009

A conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth

Anita F. Quigley; Joselito M. Razal; Brianna C. Thompson; Simon E. Moulton; Magdalena Kita; Elizabeth Kennedy; Graeme M. Clark; Gordon G. Wallace; Robert M. I. Kapsa

A biosynthetic platform composed of a conducting polypyrrole sheet embedded with unidirectional biodegradable polymer fibers is described (see image; scale bar = 50 µm). Such hybrid systems can promote rapid directional nerve growth for neuro-regenerative scaffolds and act as interfaces between the electronic circuitry of medical bionic devices and the nervous system.


Biomaterials | 2011

Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein

Brianna C. Thompson; Simon E. Moulton; Rachael T. Richardson; Gordon G. Wallace

The dopant anion in polypyrrole plays a critical role in determining the physical and chemical properties of these conducting polymers. Here we demonstrate an additional effect on the ability to incorporate and release a neurotrophic protein - neurotrophin-3. The multi-faceted role of the dopant is critical in ensuring optimal performance of polypyrroles in their use as platforms for nerve growth. In this paper, the effect of changing the co-dopant used in electrochemical polypyrrole synthesis on the compatibility with primary auditory nerve tissue is considered and compared to some of the physical properties of the films. Significant differences in the controlled-release properties of the films were also observed. The ability of the polymers to enhance nerve growth and survival in vitro with neurotrophin-3 release was also studied, which is a function of both compatibility with the neural tissue and the ability of the polymer to release sufficient neurotrophic protein to affect cell growth. A small synthetic dopant, para-toluene sulphonate, was found to perform favourably in both aspects and ultimately proved to be the most suitable material for the application at hand, which is the delivery of neurotrophins for inner-ear therapies.


Journal of Biomedical Materials Research Part A | 2009

Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF‐coated electrodes

Alison Evans; Brianna C. Thompson; Gordon G. Wallace; Rodney E. Millard; Stephen O'Leary; Graeme M. Clark; Robert K. Shepherd; Rachael T. Richardson

Release of neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF) from hair cells in the cochlea is essential for the survival of spiral ganglion neurons (SGNs). Loss of hair cells associated with a sensorineural hearing loss therefore results in degeneration of SGNs, potentially reducing the performance of a cochlear implant. Exogenous replacement of either or both neurotrophins protects SGNs from degeneration after deafness. We previously incorporated NT3 into the conducting polymer polypyrrole (Ppy) synthesized with para-toluene sulfonate (pTS) to investigate whether Ppy/pTS/NT3-coated cochlear implant electrodes could provide both neurotrophic support and electrical stimulation for SGNs. Enhanced and controlled release of NT3 was achieved when Ppy/pTS/NT3-coated electrodes were subjected to electrical stimulation. Here we describe the release dynamics and biological properties of Ppy/pTS with incorporated BDNF. Release studies demonstrated slow passive diffusion of BDNF from Ppy/pTS/BDNF, with electrical stimulation significantly enhancing BDNF release over 7 days. A 3-day SGN explant assay found that neurite outgrowth from explants was 12.3-fold greater when polymers contained BDNF (p < 0.001), although electrical stimulation did not increase neurite outgrowth further. The versatility of Ppy to store and release neurotrophins, conduct electrical charge, and act as a substrate for nerve-electrode interactions is discussed for specialized applications such as cochlear implants.


Journal of Materials Chemistry B | 2015

Processable conducting graphene/chitosan hydrogels for tissue engineering

Sepidar Sayyar; Eoin Murray; Brianna C. Thompson; Johnson Chung; David L. Officer; Sanjeev Gambhir; Geoffrey M. Spinks; Gordon G. Wallace

Composites of graphene in a chitosan-lactic acid matrix were prepared to create conductive hydrogels that are processable, exhibit tunable swelling properties and show excellent biocompatibility. The addition of graphene to the polymer matrix also resulted in significant improvements to the mechanical strength of the hydrogels, with the addition of just 3 wt% graphene resulting in tensile strengths increasing by over 200%. The composites could be easily processed into three-dimensional scaffolds with finely controlled dimensions using additive fabrication techniques and fibroblast cells demonstrate good adhesion and growth on their surfaces. These chitosan-graphene composites show great promise for use as conducting substrates for the growth of electro-responsive cells in tissue engineering.


Advanced Materials | 2015

Graphite Oxide to Graphene. Biomaterials to Bionics

Brianna C. Thompson; Eoin Murray; Gordon G. Wallace

The advent of implantable biomaterials has revolutionized medical treatment, allowing the development of the fields of tissue engineering and medical bionic devices (e.g., cochlea implants to restore hearing, vagus nerve stimulators to control Parkinsons disease, and cardiac pace makers). Similarly, future materials developments are likely to continue to drive development in treatment of disease and disability, or even enhancing human potential. The material requirements for implantable devices are stringent. In all cases they must be nontoxic and provide appropriate mechanical integrity for the application at hand. In the case of scaffolds for tissue regeneration, biodegradability in an appropriate time frame may be required, and for medical bionics electronic conductivity is essential. The emergence of graphene and graphene-family composites has resulted in materials and structures highly relevant to the expansion of the biomaterials inventory available for implantable medical devices. The rich chemistries available are able to ensure properties uncovered in the nanodomain are conveyed into the world of macroscopic devices. Here, the inherent properties of graphene, along with how graphene or structures containing it interface with living cells and the effect of electrical stimulation on nerves and cells, are reviewed.


Acta Biomaterialia | 2015

Poly(3,4-ethylenedioxythiophene): Dextran sulfate (PEDOT: DS) - A highly processable conductive organic biopolymer

David G. Harman; Robert Gorkin; Leo Stevens; Brianna C. Thompson; Klaudia Wagner; Bo Weng; Johnson Chung; Marc in het Panhuis; Gordon G. Wallace

A novel water-dispersible conducting polymer analogous to poly(3,4-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been chemically synthesized in a single reaction in high yield. PEDOT:DS, a new member of the polythiophene family, is composed of a complex between PEDOT and the sulfonated polysaccharide polyanion dextran sulfate. Drop-cast films of aqueous suspensions of the material display a native conductivity of up to 7 ± 1 S cm(-1), increasing to 20 ± 2 S cm(-1) after treatment with ethylene glycol and thermal annealing. Mass ratios of the precursors NaDS and EDOT were varied from 5:1 to 2:1 and a decrease in the NaDS:EDOT ratio produces tougher, less hygroscopic films of higher conductivity. Ultraviolet-visible spectroelectrochemistry yields spectra typical of PEDOT complexes. Cyclic voltammetry reveals that PEDOT:DS is electrochemically active from -1.0 to 0.8 V vs. Ag/Ag(+) in acetonitrile, with similar characteristics to PEDOT:PSS. Water dispersions of PEDOT:DS are successfully processed by drop casting, spray coating, inkjet printing and extrusion printing. Furthermore, laser etching of dried films allows the creation of patterns with excellent definition. To assess the cytotoxicity of PEDOT:DS, L-929 cells were cultured with a polymer complex concentration range of 0.002 to 0.2 g l(-1) in cell culture medium. No significant difference is found between the proliferation rates of L-929 cells exposed to PEDOT:DS and those in plain medium after 96h. However, PEDOT:PSS shows around 25% less cell growth after 4 days, even at the lowest concentration. Taken together, these results suggest PEDOT:DS has exceptional potential as an electromaterial for the biointerface.


RSC Advances | 2015

A bio-friendly, green route to processable, biocompatible graphene/polymer composites

Eoin Murray; Sepidar Sayyar; Brianna C. Thompson; Robert Gorkin; David L. Officer; Gordon G. Wallace

Graphene-based polymer composites are a very promising class of compounds for tissue engineering scaffolds. However, in general the methods of synthesis are environmentally hazardous and residual toxic materials can affect the biocompatibility significantly. In this paper a simple, scalable, environmentally-friendly, microwave-assisted synthesis is described that results in conducting graphene/polycaprolactone composites that retain the processability and biocompatibility of the pristine polymer without introducing possibly hazardous reducing agents. Composites of polycaprolactone and graphene oxide were synthesised in a single step by the ring-opening polymerisation of e-caprolactone in the presence of dispersed graphene oxide nanosheets under microwave irradiation. The graphene oxide provides a nucleation centre for the crystallisation of the polymer resulting in polymer-functionalised nanosheets. During polymerisation, the graphene oxide was also reduced to conducting graphene. The resulting graphene/polymer composites were comparable to composites prepared by blending previously highly chemically reduced graphene into polycaprolactone, and they could be easily dispersed in a number of solvents or melt extruded for further processing. These three-dimensional melt extruded materials showed excellent biocompatibility and are promising substrates for tissue engineering scaffolds.

Collaboration


Dive into the Brianna C. Thompson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khiam Aik Khor

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eoin Murray

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

Robert Gorkin

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge