Brianna R. Heazlewood
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brianna R. Heazlewood.
Annual Review of Physical Chemistry | 2015
Brianna R. Heazlewood; T. P. Softley
Coulomb crystals-as a source of translationally cold, highly localized ions-are being increasingly utilized in the investigation of ion-molecule reaction dynamics in the cold regime. To develop a fundamental understanding of ion-molecule reactions, and to challenge existing models that describe the rates, product branching ratios, and temperature dependence of such processes, investigators need to exercise full control over the experimental reaction parameters. This requires not only state selection of the reactants, but also control over the collision process (e.g., the collisional energy and angular momentum) and state-selective product detection. The combination of Coulomb crystals in ion traps with cold neutral-molecule sources is enabling the measurement of state-selective reaction rates in a diverse range of systems. With the development of appropriate product detection techniques, we are moving toward the ultimate goal of examining low-energy, state-to-state ion-molecule reaction dynamics.
Journal of Chemical Physics | 2014
Kathryn S. Twyman; Martin T. Bell; Brianna R. Heazlewood; T. P. Softley
The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND3 is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND3 beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90° bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND3 can be produced with rotational state populations corresponding to approximately T(rot) = 9-18 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND3. The translational temperature of the guided ND3 is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.
Physical Review A | 2015
Nabanita Deb; Laura L. Pollum; Alexander D. Smith; Matthias Keller; Christopher J. Rennick; Brianna R. Heazlewood; T. P. Softley
We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radio-frequency wave form is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields are subsequently applied to the trap electrodes for ion ejection. Close to 100% detection efficiency is demonstrated for Ca+ and CaF+ ions from bicomponent Ca+ − CaF+ Coulomb crystals prepared by the reaction of Ca+ with CH3F. A quantitative linear relationship is observed between ion number and the corresponding integrated time-of-flight (TOF) peak, independent of the ionic species. The technique is applicable to a diverse range of multicomponent Coulomb crystals—demonstrated here for Ca+ − NH3+ − NH4+ and Ca+ − CaOH+ − CaOD+ crystals—and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems.
Molecular Physics | 2015
Otto Schullian; Jérôme Loreau; Nathalie Vaeck; A. van der Avoird; Brianna R. Heazlewood; Christopher J. Rennick; T. P. Softley
A new approach to simulating rotational cooling using a direct simulation Monte Carlo (DSMC) method is described and applied to the rotational cooling of ammonia seeded into a helium supersonic jet. The method makes use of ab initio rotational state changing cross sections calculated as a function of collision energy. Each particle in the DSMC simulations is labelled with a vector of rotational populations that evolves with time. Transfer of energy into translation is calculated from the mean energy transfer for this population at the specified collision energy. The simulations are compared with a continuum model for the on-axis density, temperature and velocity; rotational temperature as a function of distance from the nozzle is in accord with expectations from experimental measurements. The method could be applied to other types of gas mixture dynamics under non-uniform conditions, such as buffer gas cooling of NH3 by He.
Journal of Physical Chemistry A | 2015
K. A. E. Meyer; L. L. Pollum; L. S. Petralia; Atreju Tauschinsky; Christopher J. Rennick; T. P. Softley; Brianna R. Heazlewood
Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.
Molecular Physics | 2015
E.W. Steer; K.S. Twyman; Brianna R. Heazlewood; T. P. Softley
Buffer-gas cooling and electrostatic velocity selection techniques are combined in this work to produce a continuous molecular beam with rotational and translational temperatures comparable to those in the interstellar medium (ISM). A number of different mixtures of the isotopologues of ammonia (ND3, ND2H, NH2D and NH3) in varying ratios are used as the source gas, and the molecular beam emanating from the quadrupole guide velocity selector is characterised using mass spectrometry and Monte Carlo trajectory simulations. The guiding of the mixed isotopologues ND2H and NH2D is demonstrated for the first time. This approach establishes both the relative concentrations of each species in the beam and the internal rotational state distributions after buffer-gas cooling and guiding. Such information is essential for experiments in which the beam is used in reaction rate measurements (e.g., for ion–molecule reactions) and facilitates the study of reactions relevant to deuterium fractionation in the ISM, such as the competition between H and D transfer with mixed species including ND2H and NH2D.
Journal of Chemical Physics | 2014
Nabanita Deb; Brianna R. Heazlewood; Christopher J. Rennick; T. P. Softley
The laser-induced blackbody-assisted rotational cooling of a linear polyatomic ion, C2H2(+), in its (2)Π ground electronic state in the presence of the blackbody radiation field at 300 K and 77 K is investigated theoretically using a rate-equations model. Although pure rotational transitions are forbidden in this non-polar species, the ν5 cis-bending mode is infrared active and the (1-0) band of this mode strongly overlaps the 300 K blackbody spectrum. Hence the lifetimes of state-selected rotational levels are found to be short compared to the typical timescale of ion trapping experiments. The ν5 (1-0) transition is split by the Renner-Teller coupling of vibrational and electronic angular momentum, and by the spin-orbit coupling, into six principal components and these effects are included in the calculations. In this paper, a rotational-cooling scheme is proposed that involves simultaneous pumping of a set of closely spaced Q-branch transitions on the (2)Δ5/2 - (2)Π3/2 band together with two Q-branch lines in the (2)Σ(+) - (2)Π1/2 band. It is shown that this should lead to >70% of total population in the lowest rotational level at 300 K and over 99% at 77 K. In principle, the multiple Q-branch lines could be pumped with just two broad-band (∼Δν = 0.4-3 cm(-1)) infrared lasers.
Physical Chemistry Chemical Physics | 2013
Nabanita Deb; Brianna R. Heazlewood; Martin T. Bell; T. P. Softley
Ensembles of ultra-cold atoms, molecules and ions (both atomic and molecular) can be held in traps for increasingly long periods of time. While these trapped species remain translationally cold, for molecules the absorption of ambient black-body radiation can result in rapid thermalisation of the rotational (and vibrational) degrees of freedom. At 300 K, internal state purity is lost typically on the order of tens of seconds, inhibiting the study of quantum state selected reactions. In this paper a theoretical model is used to investigate laser-driven, blackbody-mediated, rotational cooling schemes for several (1)Σ and (2)Π diatomic species. The rotational cooling is particularly effective for DCl(+) and HCl(+), for which 92% and >99% (respectively) of the population can be driven into the rovibrational ground state. For the other systems a broadband optical pumping source (simultaneously exciting up to four transitions) is found to enhance the population that can be accumulated in the rovibrational ground state by up to 29% over that achieved when exciting a single transition. The influence of the rotational constant, dipole moments and electronic state of the diatomics on the rotational cooling achievable is also considered. An extension to polyatomic species is discussed and a combination of cold trap environments (at 77 K) and optical pumping schemes is proposed.
Journal of Chemical Physics | 2017
Maximilian J. Doppelbauer; Otto Schullian; Jérôme Loreau; Nathalie Vaeck; Ad van der Avoird; Christopher J. Rennick; Timothy P. Softley; Brianna R. Heazlewood
A direct simulation Monte Carlo (DSMC) method is applied to model collisions between He buffer gas atoms and ammonia molecules within a buffer gas cell. State-to-state cross sections, calculated as a function of the collision energy, enable the inelastic collisions between He and NH3 to be considered explicitly. The inclusion of rotational-state-changing collisions affects the translational temperature of the beam, indicating that elastic and inelastic processes should not be considered in isolation. The properties of the cold molecular beam exiting the cell are examined as a function of the cell parameters and operating conditions; the rotational and translational energy distributions are in accord with experimental measurements. The DSMC calculations show that thermalisation occurs well within the typical 10-20 mm length of many buffer gas cells, suggesting that shorter cells could be employed in many instances-yielding a higher flux of cold molecules.
New Journal of Physics | 2017
Jutta Toscano; Atreju Tauschinsky; Katrin Dulitz; Christopher Rennick; Brianna R. Heazlewood; Timothy P. Softley