Brice Calvignac
University of Angers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brice Calvignac.
Journal of Materials Chemistry | 2011
Thomas Beuvier; Brice Calvignac; Gaëtan J.-R. Delcroix; My Kien Tran; Stéphanie Kodjikian; Nicolas Delorme; Jean-François Bardeau; Alain Gibaud; Frank Boury
We here describe a rapid method for synthesizing hollow core, porous crystalline calcium carbonate microspheres composed of vaterite using supercritical carbon dioxide in aqueous media, without surfactants. We show that the reaction in alkaline media rapidly conducts to the formation of microspheres with an average diameter of 5 µm. SEM, TEM and AFM observations reveal that the microspheres have a hollow core of around 0.7 µm width and are composed of nanograins with an average diameter of 40 nm. These nanograins are responsible for the high specific surface area of 16 m2 g−1 deduced from nitrogen absorption/desorption isotherms, which moreover confers an important porosity to the microspheres. We believe this work may pave the way for the elaboration of a biomaterial with a large potential for therapeutic as well as diagnostic applications.
Colloids and Surfaces B: Biointerfaces | 2014
Valeria E. Bosio; Maximiliano L. Cacicedo; Brice Calvignac; Ignacio E. León; Thomas Beuvier; Frank Boury; Guillermo R. Castro
Doxorubicin (Dox) is a hydrophilic drug extensively used for treatment of breast, lung, and ovarian cancer, among others; it is highly toxic and can cause serious side effects on nontargeted tissues. We developed and studied a hybrid nanoporous microparticle (hNP) carrier based on calcium carbonate and biopolymers derivatized with folic acid (FA) and containing Dox as a chemotherapeutic drug model. The hNPs were characterized by X-ray diffraction, and Raman and Fourier transform infrared (FTIR) spectroscopies. The X-ray diffraction patterns of calcium carbonate particles showed about 30-70% vaterite-calcite polymorphisms and up to 95% vaterite, depending on the absence or the presence of biopolymers as well as their type. Scanning electron microcopy images revealed that all types of hNPs were approximately spherical and porous with average diameter 1-5 μm, and smaller than CaCO3 microparticles. The presence of biopolymers in the matrices was confirmed after derivatization with a fluorescein isothiocyanate probe by means of confocal microscopy and FTIR synchrotron beamline analysis. In addition, the coupling of lambda carrageenan (λ-Car) to FA in the microparticles (FA-λ-Car-hNPs) increased the cancer-cell targeting and also extended the specific surface area by up to ninefold (26.6 m2 g(-1)), as determined by the Brunauer-Emmett-Teller isotherm. A nanostructured porous surface was found in all instances, and the FA-λ-Car-hNP pore size was about 30 nm, as calculated by means of the Barrett-Joyner-Halenda adsorption average. The test of FA-λ-Car-hNP anticancer activity on human osteosarcoma MG-63 cell line showed cell viabilities of 13% and 100% with and without Dox, respectively, as determined by crystal violet staining after 24 h of incubation.
Journal of Applied Crystallography | 2012
Elvia Anabela Chavez Panduro; Thomas Beuvier; Manuel Fernández Martínez; L. Hassani; Brice Calvignac; Frank Boury; Alain Gibaud
The results of small-angle and ultra-small-angle X-ray scattering on porous CaCO3 microparticles of pulverulent vaterite made by a conventional chemical route and by using supercritical CO2 are presented. The scattering curves are analysed in the framework of the Guinier–Porod model, which gives the radii of gyration of the scattering objects and their fractal dimension. In addition, the porosity and the specific surface area are determined by using the Porod invariant, which is modified to take into account the effective thickness of the pellet. The results of this analysis are compared with those obtained by nitrogen adsorption.
Journal of Materials Chemistry B | 2013
L. Hassani; François Hindré; Thomas Beuvier; Brice Calvignac; Nolwenn Lautram; Alain Gibaud; Frank Boury
The aim of the present work was to assess the merits of supercritical CO2 (SC-CO2) as a process for protein encapsulation into calcium carbonate microparticles. Lysozyme, chosen as a model protein, was entrapped during CaCO3 precipitation in two different media: water (normal route) and SC-CO2. The particles were characterized and compared in terms of size, zeta potential, morphology by SEM, crystal polymorph and lysozyme encapsulation. Fluorescent and confocal images suggested the encapsulation and core-shell distribution of lysozyme into CaCO3 obtained by the SC-CO2 process. A high encapsulation efficiency was reached by a supercritical CO2 process (50%) as confirmed by the increased zeta potential value, lysozyme quantification by HPLC and a specific bioassay (M. lysodeikticus). Conversely, lysozyme was scarcely entrapped by the normal route (2%). Thus, supercritical CO2 appears to be an effective process for protein encapsulation within nanostructured CaCO3 particles. Moreover, this process may be used for encapsulation of a wide range of macromolecules and bioactive substances.
International Journal of Pharmaceutics | 2016
Zeynep Ergul Yilmaz; Thomas Cordonnier; Antoine Debuigne; Brice Calvignac; Christine Jérôme; Frank Boury
Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ precipitation of calcium carbonate particles prepared by a process based on supercritical CO2 and using a new type of degradable well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and polyphosphoester blocks acting as templating agent for the calcium carbonate. For this study, lysozyme was chosen as a model for therapeutic protein for its availability and ease of detection. It was found that by this green process, loading into the CaCO3 microparticles with a diameter about 2μm can be obtained as determined by scanning electron microscopy. A protein loading up to 6.5% active lysozyme was measured by a specific bioassay (Micrococcus lysodeikticus). By encapsulating fluorescent-labelled lysozyme (lysozyme-FITC), the confocal microscopy images confirmed its encapsulation and suggested a core-shell distribution of lysozyme into CaCO3, leading to a release profile reaching a steady state at 59% of release after 90min.
Analytical Chemistry | 2014
Thomas Beuvier; Brice Calvignac; Jean-François Bardeau; A. Bulou; Frank Boury; Alain Gibaud
Dissolved inorganic carbon (DIC) content of aqueous systems is a key function of the pH, of the total alkanility (TA), and of the partial pressure of CO2. However, common analytical techniques used to determine the DIC content in water are unable to operate under high CO2 pressure. Here, we propose to use Raman spectroscopy as a novel alternative to discriminate and quantitatively monitor the three dissolved inorganic carbon species CO2(aq), HCO3(-), and CO3(2-) of alkaline solutions under high CO2 pressure (from P = 0 to 250 bar at T = 40 °C). In addition, we demonstrate that the pH values can be extracted from the molalities of CO2(aq) and HCO3(-). The results are in very good agreement with those obtained from direct spectrophotometric measurements using colored indicators. This novel method presents the great advantage over high pressure conventional techniques of not using breakable electrodes or reference additives and appears of great interest especially in marine biogeochemistry, in carbon capture and storage and in material engineering under high CO2 pressure.
Journal of Colloid and Interface Science | 2013
Audrey Favrelle; Cédric Boyère; Kien My Tran; David Alaimo; Brice Calvignac; Michel Paquot; Frank Boury; Christine Jérôme; Antoine Debuigne
The water/carbon dioxide (W/CO2) interfacial activity and emulsifying capacity of hydrocarbon and fluorinated carbohydrate esters are investigated of the first time and compared to the performance of sodium-bis(2-ethylhexyl)sulfosuccinate (AOT). The reduction of the W/CO2 interfacial tension was measured using a pendant drop tensiometer equipped with a cell view pressurized with CO2 at 80 bar and 45°C. It was found that the interface stabilization improved in the order AOT<6-O-myristoyl mannose<6-O-(2H,2H,3H,3H-perfluoroundecanoyl)-D-mannose. In the latter case, a drastic reduction of the W/CO2 interfacial tension was observed (85% reduction, interfacial tension at the equilibrium=3.6 mN/m), which emphasizes the advantage of using a fluorinated CO2-philic tail and the potential of sugars as hydrophilic head. The formulation of stable W/CO2 emulsions was also achieved using the fluorinated mannose derivative. This study paves the way to the design of a novel class of competitive surface active agents for W/CO2 emulsions.
Journal of Materials Chemistry B | 2015
My-Kien Tran; Amin Swed; Brice Calvignac; Kim-Ngan Dang; L. Hassani; Thomas Cordonnier; Frank Boury
The aim of this work was to develop a novel formulation method, termed modified-PGSS (modified-Particle from Gas Saturated Solution), for the encapsulation of protein into polymeric microparticles in CO2 medium. In this study, isosorbide dimethyl ether (DMI), a non-toxic water-miscible solvent, was used for the formulation and lysozyme was chosen as a model protein for encapsulation into PLGA microparticles. First, the mechanism of particle formation has been extensively studied and was discussed in detail. Phase behavior was investigated by measuring the solubility of CO2 in DMI and volumetric expansion of DMI saturated in CO2. Here, we demonstrate the consistency of the experimental values with the data obtained from the mathematical (such as the neural network) and thermodynamic (such as the Peng-Robinson equation of state) models. These models were built to develop predictive tools in the chosen experimental space for microparticle formulation. Furthermore, these microparticles were characterized in terms of size and zeta potential. The morphology and protein distribution within PLGA microparticles were determined using scanning electron microscopy and confocal microscopy, respectively. High encapsulation efficiency (65%) was obtained as confirmed by lysozyme quantification using a specific bioassay (M. lysodeikticus). Moreover, the in vitro protein release profile from loaded microparticles was presented. In this study, we report an innovative and green process for lysozyme encapsulation into PLGA microparticles. Thus, this process could be applied to the encapsulation of therapeutic proteins requiring protection and controlled release such as growth factors for regenerative medicine.
International Journal of Pharmaceutics | 2017
Gaëtan Lefebvre; Jérémie Riou; Guillaume Bastiat; Emilie Roger; K. Frombach; Jean-Christophe Gimel; Patrick Saulnier; Brice Calvignac
The aim of the present study was to optimize the size and polydispersity of a lipid nanoemulsion as a function of the oil (Labrafac® WL1349), surfactant (Kolliphor® HS 15) and cosurfactant (Span® 80) phase composition and temperature. The nanoemulsions were prepared using a low-energy self-emulsification method. The Z-average diameter and the polydispersity index (PDI) were modeled with mixture experiments. Nanoemulsions from 20nm to 120nm with PDI<0.2 were obtained at the three different tested temperatures (30°C, 50°C and 90°C). The nanoemulsion size was able to be controlled with the oil, surfactant and cosurfactant concentrations. Interestingly, the smallest PDIs were obtained at 30°C, and the cosurfactant concentration was able to be adjusted to optimize the formulation and to obtain nanoemulsions in the 20-120nm range with a PDI smaller than 0.14. These nanoemulsions have shown a good stability at 4°C in storage conditions and at 37°C in diluted conditions.
Journal of Tissue Engineering and Regenerative Medicine | 2012
Gildas Rethore; Cécile Boyer; Brice Calvignac; Fan Xie; Jérôme Guicheux; Jean-François Tassin; Frank Boury; Pierre Weiss
Adequate cellular in-growth into biomaterials is one of the fundamental requirements in regenerative medicine. Type-I-collagen is the most commonly used material for soft tissue engineering, because it is nonimmunogenic and a highly porous network for cellular support. However, adequate cell in-growth and cell seeding has been suboptimal. Different densities of collagen scaffolds (0.3% to 0.8% (w/v)) with/without polymer knitting (poly-caprolactone (PCL)) were prepared. The structure of collagen scaffolds was characterized using scanning electronic microscopy (SEM) and HE staining. The mechanical strength of hybrid scaffolds was determined using tensile strength analysis. Cellular penetration and interconnectivity were evaluated using fluorescent bead distribution and human bladder smooth muscle cells and urothelium seeding. SEM and HE analysis showed the honeycomb structure and the hybrid scaffolds were adequately connected. The hybrid scaffolds were much stronger than collagen alone. The distribution of the beads and cells were highly dependent on the collagen density: at lower densities the beads and cells were more evenly distributed and penetrated deeper into the scaffold. The lower density collagen scaffolds showed remarkably deeper cellular penetration and by combining it with PCL knitting the tensile strength was enhanced. This study indicated that a 0.4% hybrid scaffold strengthened with knitting achieved the best cellular distribution.Human adult heart harbors a population of resident progenitor cells that can be isolated by Sca-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes and vascular cells in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, the survival rate and retention is really poor, less than 1% of injected cells being detectable in the hosttissue within few weeks. The present study aimed at investigating the possibility to produce scaffoldless, thick cardiac progenitor cell-derived cardiac patches by thermo-responsive technology. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces obtained by poly-N-isopropylacrylamide (PNIPAAm) surface immobilization. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and produced abundant extracellular matrix, while preserving their phenotype and plasticity. Cell phenotype and viability within the 3D construct were followed for 1 week, showing that no significant differentiation or apoptotic events occurred within the construct. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such approach to deliver stem cells.Spinal cord injury and repair is one of the important focus areas in tissue regeneration. Mechanical trauma caused due to factors such as contusion, compression or involuntary stretching induce post-traumatic secondary tissue damage in many Spinal Cord Injury (SCI) patients. Therefore, there is a need for scaffolds that provide a conducive threedimensionsal (3D) environment for injured cells to attach and grow. In this study we propose to synthesize 3D polymeric scaffolds in order to study the mechanical and adhesive properties & the nature of the interactions between hyaluronan-based (HY) biomaterials and cells and tissues both in vitroandin vivo. Here we have synthesized 3D HY-based hydrogels with robust mechanical and adhesive properties and demonstrate the use of this material for neuronal-related applications such as the treatment of SCI. Cell culture and survivability studies were done with NSC-34 cells. Live/Dead assay performed on the cells revealed significant differences in the staining of live cells and showed increased viability and proliferation. The number of live cells in the HY-based hydrogels with 0.1% collagen showed higher cell numbers compared with the other hydrogels. In this study we show that Injectable HYbased hydrogels with high elasticity, comparable to the mechanical properties of nervous tissue have been used in this study to study their biocompatibility and neuroprotective properties and they show better affinity for neuronal cells.Calcium phosphates (CaP) obtained by biomineralisation in Simulated Boby Fluid have been used for decades to assess the mineralisation capability of biomaterials. Recently, they have been envisioned as potential agents to promote bone formation. In this study, we have fabricated and coated with calcium phosphate melt electrospun scaffolds whereby macropores permit adequate cell migration and nutrient transfer. We have systematically investigated the effect of coating and osteoinduction onto the response of ovine osteoblasts and we observed that the coating up-regulated alkaline phosphatase activity regardless of the in vitro culture conditions. Micro Computed Tomography revealed that only scaffolds cultured in an osteoinductive cocktail were capable of depositing mineralised matrix, and that CaP coated scaffolds were more efficient at promoting mineralisation. Theses scaffolds were subcutaneously implanted in athymic rats and this demonstrated that the osteoinduction was a pre-requisite for bone formation in this ectopic model. It showed that although the bone formation was not significantly different after 8 weeks, the CaP coated scaffolds were superior at inducing bone formation as evidenced by higher levels of mineralisation at earlier time points. This work demonstrated that CaP coating is not sufficient to induce bone formation; however the combination of osteoinduction and CaP coating resulted in earlier bone formation in an ectopic model.Introduction: Bladder regeneration using minced bladder mucosa is an alternative to costly and time-consuming conventional in vitro culturing of urothelial cells. In this method, the uroepithelium ...