Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bridget A. Emmett is active.

Publication


Featured researches published by Bridget A. Emmett.


Ecological Applications | 2010

Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis

Roland Bobbink; Kevin Hicks; James N. Galloway; T. Spranger; R. Alkemade; Mike Ashmore; Mercedes M. C. Bustamante; Steve Cinderby; Eric A. Davidson; F. Dentener; Bridget A. Emmett; Jan Willem Erisman; Mark E. Fenn; Frank S. Gilliam; Annika Nordin; Linda H. Pardo; W. de Vries

Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such as direct toxicity of nitrogen gases and aerosols, long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem- and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition, and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America, especially for the more sensitive ecosystem types, including several ecosystems of high conservation importance. The results of this assessment show that the vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe), and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted studies are required in low background areas, especially in the G200 ecoregions.


Nature | 1999

Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests

K.J. Nadelhofer; Bridget A. Emmett; Per Gundersen; O.J. Kjonaas; C.J. Koopmans; Patrick Schleppi; A. Tietema; Richard F. Wright

Humans have altered global nitrogen cycling such that more atmospheric N2 is being converted (‘fixed’) into biologically reactive forms by anthropogenic activities than by all natural processes combined. In particular, nitrogen oxides emitted during fuel combustion and ammonia volatilized as a result of intensive agriculture have increased atmospheric nitrogen inputs (mostly NO3 and NH4) to temperate forests in the Northern Hemisphere. Because tree growth in northern temperate regions is typically nitrogen-limited, increased nitrogen deposition could have the effect of attenuating rising atmospheric CO2 by stimulating the accumulation of forest biomass. Forest inventories indicate that the carbon contents of northern forests have increased concurrently with nitrogen deposition since the 1950s. In addition, variations in atmospheric CO2 indicate a globally significant carbon sink in northern mid-latitude forest regions. It is unclear, however, whether elevated nitrogen deposition or other factors are the primary cause of carbon sequestration in northern forests. Here we use evidence from 15N-tracer studies in nine forests to show that elevated nitrogen deposition is unlikely to be a major contributor to the putative CO2 sink in forested northern temperature regions.


Forest Ecology and Management | 1998

Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data

Per Gundersen; Bridget A. Emmett; O.J. Kjonaas; C.J. Koopmans; A. Tietema

Abstract Impact of nitrogen (N) deposition was studied by comparing N fluxes, N concentrations and N pool sizes in vegetation and soil in five coniferous forest stands at the NITREX sites: Gardsjon (GD), Sweden, Klosterhede (KH), Denmark, Aber (AB), Wales, UK, Speuld (SP), the Netherlands, and Ysselsteyn (YS), the Netherlands. The sites span a N- deposition gradient from 13 to 59 kg N ha−1 yr−1. Measurements of soil N transformation rates by laboratory and field incubations were part of the site comparison. Further, results from 4–5 yr of NH4NO3 addition (35 kg N ha−1 yr−1) at low deposition sites (GD, KH, AB) and 6 yr of N removal (roofs) at high deposition sites (SP, YS) were included in the analysis. Significant correlations were found between a range of variables including N concentrations in foliage and litter, soil N transformation rates and forest floor characteristics. Using the methods from principal component analysis (PCA) these variables were summarized to an index of site N status that assigned the lowest N status to GD and the highest to YS. Site N status increased with N deposition with the exception that AB was naturally rich in N. Nitrate leaching was significantly correlated with N status but not correlated with N deposition. Forest floor mass and root biomass decreased with increased N status. Characteristics of the mineral soil were not correlated with vegetation and forest floor variables. High C N ratios in the mineral soil at the high-N deposition sites (SP, YS) suggest that the mineral soil pool changes slowly and need not change for N saturation to occur. Nitrogen transformation rates measured in laboratory incubations did not agree well with rates measured in the field except for a good correlation between ‘gross’ mineralization in the laboratory and ‘net’ mineralization in the field. The changes in N concentrations and fluxes after manipulation of N input followed the direction expected from the site comparison: increases at N addition and decreases at N removal sites. Nitrate leaching responded within the first year of treatment at all sites, whereas responses in vegetation and soil were delayed. Changes in N status by the manipulation treatments were small compared to the differences between sites. Changes in nitrate leaching were small at the low-N status sites and substantial at the high-N status sites. Nitrogen-limited and N-saturated forest ecosystems could be characterized quantitatively.


Ecosystems | 2004

The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands Across an Environmental Gradient

Bridget A. Emmett; Claus Beier; Marc Estiarte; A. Tietema; Hanne. L. Kristensen; D. Williams; Josep Peñuelas; Inger Kappel Schmidt; Alwyn Sowerby

Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out experimental manipulations involving ecosystem warming and prolonged summer drought in ericaceous shrublands across a European climate gradient. We used retractable covers to create artificial nighttime warming and prolonged summer drought to 20-m2 experimental plots. Combining the data from across the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%–19% increases of soil respiration in response to warming and decreases of 3%–29% in response to drought were observed. Across the environmental gradient and below soil temperatures of 20°C at a depth of 5–10 cm, a mean Q10 of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q10 values were observed in Spain and the UK and were therefore not correlated with soil temperature. A trend of increased accumulated surface litter mass loss was observed with experimental warming (2%– 22%) but there was no consistent response to experimental drought. In contrast to soil respiration and decomposition, variability in net N mineralization was best explained by soil moisture rather than temperature. When water was neither limiting or in excess, a Q10 of 1.5 was observed for net N mineralization rates. These data suggest that key soil processes will be differentially affected by predicted changes in rainfall pattern and temperature and the net effect on ecosystem functioning will be difficult to predict without a greater understanding of the controls underlying the sensitivity of soils to climate variables.


Ecosystems | 2004

Novel Approaches to Study Climate Change Effects on Terrestrial Ecosystems in the Field: Drought and Passive Nighttime Warming

Claus Beier; Bridget A. Emmett; Per Gundersen; A. Tietema; Josep Peñuelas; Marc Estiarte; Carmen Gordon; Antonie Gorissen; Laura Llorens; Ferran Rodà; D. Williams

This article describes new approaches for manipulation of temperature and water input in the field. Nighttime warming was created by reflection of infrared radiation. Automatically operated reflective curtains covered the vegetation at night to reduce heat loss to the atmosphere. This approach mimicked the way climate change, caused by increased cloudiness and increased greenhouse gas emissions, alters the heat balance of ecosystems. Drought conditions were created by automatically covering the vegetation with transparent curtains during rain events over a 2–5-month period. The experimental approach has been evaluated at four European sites across a climate gradient. All sites were dominated (more than 50%) by shrubs of the ericaceous family. Within each site, replicated 4-m × 5-m plots were established for control, warming, and drought treatments and the effect on climate variables recorded. Results over a two-year period indicate that the warming treatment was successful in achieving an increase of the minimum temperatures by 0.4–1.2°C in the air and soil. The drought treatment resulted in a soil moisture reduction of 33%–82% at the peak of the drought. The data presented demonstrate that the approach minimizes unintended artifacts with respect to water balance, moisture conditions, and light, while causing a small but significant reduction in wind speed by the curtains. Temperature measurements demonstrated that the edge effects associated with the treatments were small. Our method provides a valuable tool for investigating the effects of climate change in remote locations with minimal artifacts.


Ecosystems | 2004

Nonintrusive Field Experiments Show Different Plant Responses to Warming and Drought Among Sites, Seasons, and Species in a North–South European Gradient

Josep Peñuelas; Carmen Gordon; Laura Llorens; T. Nielsen; A. Tietema; Claus Beier; Paula Bruna; Bridget A. Emmett; Marc Estiarte; Antonie Gorissen

We used a novel, nonintrusive experimental system to examine plant responses to warming and drought across a climatic and geographical latitudinal gradient of shrubland ecosystems in four sites from northern to southern Europe (UK, Denmark, The Netherlands, and Spain). In the first two years of experimentation reported here, we measured plant cover and biomass by the pinpoint method, plant 14C uptake, stem and shoot growth, flowering, leaf chemical concentration, litterfall, and herbivory damage in the dominant plant species of each site. The two years of approximately 1°C experimental warming induced a 15% increase in total aboveground plant biomass growth in the UK site. Both direct and indirect effects of warming, such as longer growth season and increased nutrient availability, are likely to be particularly important in this and the other northern sites which tend to be temperature-limited. In the water-stressed southern site, there was no increase in total aboveground plant biomass growth as expected since warming increases water loss, and temperatures in those ecosystems are already close to the optimum for photosynthesis. The southern site presented instead the most negative response to the drought treatment consisting of a soil moisture reduction at the peak of the growing season ranging from 33% in the Spanish site to 82% in The Netherlands site. In the Spanish site there was a 14% decrease in total aboveground plant biomass growth relative to control. Flowering was decreased by drought (up to 24% in the UK and 40% in Spain). Warming and drought decreased litterfall in The Netherlands site (33% and 37%, respectively) but did not affect it in the Spanish site. The tissue P concentrations generally decreased and the N/P ratio increased with warming and drought except in the UK site, indicating a progressive importance of P limitation as a consequence of warming and drought. The magnitude of the response to warming and drought was thus very sensitive to differences among sites (cold-wet northern sites were more sensitive to warming and the warm-dry southern site was more sensitive to drought), seasons (plant processes were more sensitive to warming during the winter than during the summer), and species. As a result of these multiple plant responses, ecosystem and community level consequences may be expected.


Ecological Applications | 2011

Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States

Linda H. Pardo; Mike E. Fenn; Christine L. Goodale; Linda H. Geiser; Charles T. Driscoll; Edith B. Allen; Jill S. Baron; Roland Bobbink; Williams D. Bowman; Christopher M. Clark; Bridget A. Emmett; Frank S. Gilliam; Tara L. Greaver; Sharon J. Hall; Erik A. Lilleskov; Lingli Liu; Jason A. Lynch; Knute J. Nadelhoffer; Steven S. Perakis; Molly J. Robin-Abbott; John L. Stoddard; Kathleen C. Weathers; Robin L. Dennis

Human activity in the last century has led to a significant increase in nitrogen (N) emissions and atmospheric deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the deposition of pollution that would be harmful to ecosystems is the determination of critical loads. A critical load is defined as the input of a pollutant below which no detrimental ecological effects occur over the long-term according to present knowledge. The objectives of this project were to synthesize current research relating atmospheric N deposition to effects on terrestrial and freshwater ecosystems in the United States, and to estimate associated empirical N critical loads. The receptors considered included freshwater diatoms, mycorrhizal fungi, lichens, bryophytes, herbaceous plants, shrubs, and trees. Ecosystem impacts included: (1) biogeochemical responses and (2) individual species, population, and community responses. Biogeochemical responses included increased N mineralization and nitrification (and N availability for plant and microbial uptake), increased gaseous N losses (ammonia volatilization, nitric and nitrous oxide from nitrification and denitrification), and increased N leaching. Individual species, population, and community responses included increased tissue N, physiological and nutrient imbalances, increased growth, altered root : shoot ratios, increased susceptibility to secondary stresses, altered fire regime, shifts in competitive interactions and community composition, changes in species richness and other measures of biodiversity, and increases in invasive species.


Ecology Letters | 2012

Precipitation manipulation experiments: challenges and recommendations for the future

Claus Beier; Carl Beierkuhnlein; Thomas Wohlgemuth; Josep Peñuelas; Bridget A. Emmett; Christian Körner; Hans J. De Boeck; Jesper Christensen; Sebastian Leuzinger; Ivan A. Janssens; Karin Hansen

Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.


Forest Ecology and Management | 1998

Natural abundance of 15N in forests across a nitrogen deposition gradient

Bridget A. Emmett; O.J. Kjonaas; Per Gundersen; C.J. Koopmans; A. Tietema; D. Sleep

Chronic atmospheric nitrogen deposition can alter the rate of internal nitrogen cycling and increase the magnitude of N leaching losses in forested ecosystems. As fractionation of nitrogen in favour of the lighter 14N occurs during various transformations associated with N-enrichment and nitrogen loss, it has been proposed that the 15N signal of vegetation may provide a useful tool in evaluating the past and current N status of forested ecosystems. A series of coniferous forests across a European nitrogen deposition gradient within the NITREX project provided an opportunity to test the relationships between nitrogen supply from atmospheric deposition and the relative 15N-enrichment of vegetation to soil, across a large geographical area. Most δ15N values for above- and below-ground tree components, soil at four depths, bulk precipitation and/or throughfall water and soil solution or outflow water values were within those observed elsewhere except for a few notable exceptions. There was a significant positive relationship between the δ15N enrichment of the tree foliage relative to the soil horizons (or the enrichment factor), and nitrogen flux in the throughfall if Aber forest, N. Wales, was excluded from the regression analysis. An unusually high enrichment factor at the Aber site indicated that a the high rate of N cycling at the site was in excess of that predicted from current N deposition. This was attributed to the effect of ploughing and tree planting on the relatively N- and clay-rich mineral horizons at Aber compared to other sites. Highly significant relationships (P < 0.01) between enrichment factors and parameters describing internal rates of N cycling, such as litterfall N flux and nitrification rates in upper soil horizons, supported this conclusion. There appears to be a strong link between the rate of N cycling and the δ15N enrichment factor, rather than N deposition or nitrate leaching per se. These results confirm the potential use of the δ15N enrichment factor to identify sites influenced by nitrogen deposition. However, consideration should be taken of other site characteristics and land management practises which also influence soil N dynamics and N cycling.


Nature | 2016

Quantifying global soil carbon losses in response to warming

Thomas W. Crowther; Katherine Todd-Brown; C. W. Rowe; William R. Wieder; Joanna C. Carey; Megan B. Machmuller; L. Basten Snoek; Shibo Fang; Guangsheng Zhou; Steven D. Allison; John M. Blair; Scott D. Bridgham; Andrew J. Burton; Yolima Carrillo; Peter B. Reich; James S. Clark; Aimée T. Classen; Feike A. Dijkstra; Bo Elberling; Bridget A. Emmett; Marc Estiarte; Serita D. Frey; Jixun Guo; John Harte; Lifen Jiang; Bart R. Johnson; György Kröel-Dulay; Klaus Steenberg Larsen; Hjalmar Laudon; Jocelyn M. Lavallee

The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12–17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon–climate feedback that could accelerate climate change.

Collaboration


Dive into the Bridget A. Emmett's collaboration.

Top Co-Authors

Avatar

A. Tietema

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Claus Beier

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josep Peñuelas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marc Estiarte

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Per Gundersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Chris D. Evans

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge