Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bridget L. Callaghan is active.

Publication


Featured researches published by Bridget L. Callaghan.


Translational Psychiatry | 2012

The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories

Bridget L. Callaghan; Rick Richardson

Mental health problems are often assumed to have their roots in early-life experiences. However, memories acquired in infancy are rapidly forgotten in nearly all species (including humans). As yet, a testable mechanism on how early-life experiences have a lasting impact on mental health is lacking. In these experiments, we tested the idea that infant adversity leads to an early transition into adult-like fear retention, allowing infant memories to have a longer-lasting influence. Rats were exposed to maternal separation (3 h per day) across postnatal days (P) 2–14, or their mother was given corticosterone in her drinking water across the same period. Infant rats were then trained to fear a conditioned stimulus (CS) paired with an aversive unconditioned stimulus (US) on P17. Retention of the fear association was then tested 1–55 days later. When tested one day after the CS–US association was formed, both standard-reared (SR) and maternally-separated (MS) rats exhibited strong memory. However, when tested 10 days later, SR rats exhibited robust forgetting, whereas MS rats exhibited near-perfect retention. These effects were mimicked by exposing the mother to the stress hormone corticosterone in the drinking water. Finally, fear associations in P17 MS rats were retained for up to 30 days. Our findings point to differences in retention of fear as one factor that might underlie the propensity of stress-exposed individuals to exhibit early anxiety symptoms and suggest that manipulations of the corticosterone system may hold the key to ameliorating some of the effects of early stress on persistent retention of fear.


Developmental Psychobiology | 2014

The international society for developmental psychobiology Sackler symposium: Early adversity and the maturation of emotion circuits—A cross‐species analysis

Bridget L. Callaghan; Regina M. Sullivan; Brittany R. Howell; Nim Tottenham

Early-life caregiving shapes the architecture and function of the developing brain. The fact that the infant-caregiver relationship is critically important for infant functioning across all altricial species, and that the anatomical circuits supporting emotional functioning are highly preserved across different species, suggests that the results of studies examining the role of early adversity and emotional functioning should be translatable across species. Here we present findings from four different research laboratories, using three different species, which have converged on a similar finding: adversity accelerates the developmental trajectory of amygdala-prefrontal cortex (PFC) development and modifies emotional behaviors. First, a rodent model of attachment learning associated with adversity is presented showing precocial disruption of attachment learning and emergence of heightened fear learning and emotionality. Second, a model of infant-mother separation is presented in which early adversity is shown to accelerate the developmental emergence of adult-like fear retention and extinction. Third, a model of early life adversity in Rhesus monkeys is presented in which a naturally occurring variation in maternal-care (abuse) is shown to alter the functioning of emotion circuits. Finally, a human model of maternal deprivation is presented in which children born into orphanages and then adopted abroad exhibit aberrant development of emotion circuits. The convergence of these cross-species studies on early life adversity suggests that adversity targets the amygdala and PFC and has immediate impact on infant behavior with the caregiver, and emotional reactions to the world. These results provide insight into mechanisms responsible for caregiver induced mental health trajectory alterations.


Neuropsychopharmacology | 2016

The Neuro-Environmental Loop of Plasticity: A Cross-Species Analysis of Parental Effects on Emotion Circuitry Development Following Typical and Adverse Caregiving

Bridget L. Callaghan; Nim Tottenham

Early experiences critically shape the structure and function of the brain. Perturbations in typical/species-expected early experiences are known to have profound neural effects, especially in regions important for emotional responding. Parental care is one species-expected stimulus that plays a fundamental role in the development of emotion neurocircuitry. Emerging evidence across species suggests that phasic variation in parental presence during the sensitive period of childhood affects the recruitment of emotional networks on a moment-to-moment basis. In addition, it appears that increasing independence from caregivers cues the termination of the sensitive period for environmental input into emotion network development. In this review, we examine how early parental care, the central nervous system, and behavior come together to form a ‘neuro-environmental loop,’ contributing to the formation of stable emotion regulation circuits. To achieve this end, we focus on the interaction of parental care and the developing amygdala–medial prefrontal cortex (mPFC) network—that is at the core of human emotional functioning. Using this model, we discuss how individual or group variations in parental independence, across chronic and brief timescales, might contribute to neural and emotional phenotypes that have implications for long-term mental health.


Developmental Psychobiology | 2014

The international society for developmental psychobiology Sackler symposium

Bridget L. Callaghan; Regina M. Sullivan; Brittany R. Howell; Nim Tottenham

Early-life caregiving shapes the architecture and function of the developing brain. The fact that the infant-caregiver relationship is critically important for infant functioning across all altricial species, and that the anatomical circuits supporting emotional functioning are highly preserved across different species, suggests that the results of studies examining the role of early adversity and emotional functioning should be translatable across species. Here we present findings from four different research laboratories, using three different species, which have converged on a similar finding: adversity accelerates the developmental trajectory of amygdala-prefrontal cortex (PFC) development and modifies emotional behaviors. First, a rodent model of attachment learning associated with adversity is presented showing precocial disruption of attachment learning and emergence of heightened fear learning and emotionality. Second, a model of infant-mother separation is presented in which early adversity is shown to accelerate the developmental emergence of adult-like fear retention and extinction. Third, a model of early life adversity in Rhesus monkeys is presented in which a naturally occurring variation in maternal-care (abuse) is shown to alter the functioning of emotion circuits. Finally, a human model of maternal deprivation is presented in which children born into orphanages and then adopted abroad exhibit aberrant development of emotion circuits. The convergence of these cross-species studies on early life adversity suggests that adversity targets the amygdala and PFC and has immediate impact on infant behavior with the caregiver, and emotional reactions to the world. These results provide insight into mechanisms responsible for caregiver induced mental health trajectory alterations.


Frontiers in Psychiatry | 2013

From Resilience to Vulnerability: Mechanistic Insights into the Effects of Stress on Transitions in Critical Period Plasticity

Bridget L. Callaghan; Bronwyn M. Graham; Stella Li; Rick Richardson

While early experiences are proposed to be important for the emergence of anxiety and other mental health problems, there is little empirical research examining the impact of such experiences on the development of emotional learning. Of the research that has been performed in this area, however, a complex picture has emerged in which the maturation of emotion circuits is influenced by the early experiences of the animal. For example, under typical laboratory rearing conditions infant rats rapidly forget learned fear associations (infantile amnesia) and express a form of extinction learning which is relapse-resistant (i.e., extinction in infant rats may be due to fear erasure). In contrast, adult rats exhibit very long-lasting memories of past learned fear associations, and express a form of extinction learning that is relapse-prone (i.e., the fear returns in a number of situations). However, when rats are reared under stressful conditions then they exhibit adult-like fear retention and extinction behaviors at an earlier stage of development (i.e., good retention of learned fear and relapse-prone extinction learning). In other words, under typical rearing conditions infant rats appear to be protected from exhibiting anxiety whereas after adverse rearing fear learning appears to make those infants more vulnerable to the later development of anxiety. While the effects of different experiences on infant rats’ fear retention and extinction are becoming better documented, the mechanisms which mediate the early transition seen following stress remain unclear. Here we suggest that rearing stress may lead to an early maturation of the molecular and cellular signals shown to be involved in the closure of critical period plasticity in sensory modalities (e.g., maturation of GABAergic neurons, development of perineuronal nets), and speculate that these signals could be manipulated in adulthood to reopen infant forms of emotional learning (i.e., those that favor resilience).


Genes, Brain and Behavior | 2016

The lasting impact of early‐life adversity on individuals and their descendants: potential mechanisms and hope for intervention

Caitlin S. M. Cowan; Bridget L. Callaghan; Janice M. Kan; Rick Richardson

The adverse effects of early‐life stress are pervasive, with well‐established mental and physical health consequences for exposed individuals. The impact of early adverse experiences is also highly persistent, with documented increases in risk for mental illness across the life span that are accompanied by stable alterations in neural function and hormonal responses to stress. Here, we review some of these ‘stress phenotypes’, with a focus on intermediary factors that may signal risk for long‐term mental health outcomes, such as altered development of the fear regulation system. Intriguingly, recent research suggests that such stress phenotypes may persist even beyond the life span of the individuals, with consequences for their offspring and grand‐offspring. Phenotypic characteristics may be transmitted to future generations via either the matriline or the patriline, a phenomenon that has been demonstrated in both human and animal studies. In this review, we highlight behavioral and epigenetic factors that may contribute to this multigenerational transmission and discuss the potential of various treatment approaches that may halt the cycle of stress phenotypes.


Behavioral Neuroscience | 2013

Acute early-life stress results in premature emergence of adult-like fear retention and extinction relapse in infant rats

Caitlin S. M. Cowan; Bridget L. Callaghan; Rick Richardson

Recent studies have shown that chronic early life stress results in precocious expression of the adult-like phenotype of fear retention and inhibition. However, it is unknown whether the experience of acute early trauma has the same effects as exposure to chronic early stress. In the present study, a 24-hr period of maternal deprivation on postnatal day (P) 9 was used as an acute early life stressor. In infancy (P16-17), maternally deprived and standard-reared rats were conditioned to fear a noise paired with shock. In Experiments 1 and 2, fear to the noise was then extinguished before rats were tested for context-mediated fear renewal or stress-induced fear reinstatement. In Experiments 3a and 3b, conditioned rats were tested for fear retention 1, 7, or 14 days after training. Whereas standard-reared infants exhibited relapse-resistant extinction and infantile amnesia (i.e., behaviors typical of their age), maternally deprived infants exhibited the renewal and reinstatement effects (i.e., relapse-prone extinction) and showed good retention of fear over the 7- and 14-day intervals (i.e., infantile amnesia was reduced). In other words, similar to rats exposed to chronic early life stress, rats exposed to acute early stress expressed an adult-like profile of fear retention and inhibition during infancy. These findings suggest that similar mechanisms might be involved in the effects of acute and chronic stress on emotional development, and may have implications for our understanding and treatment of emotional disorders associated with early adversity.


Stress | 2012

Early-life stress affects extinction during critical periods of development: An analysis of the effects of maternal separation on extinction in adolescent rats

Bridget L. Callaghan; Rick Richardson

Adolescence is a period of heightened susceptibility to anxiety disorders, yet we have little experimental evidence on what factors may lead to psychopathology in adolescence. Preclinical models of extinction are commonly used to study the treatment of anxiety symptoms. Interestingly, recent research has shown that there are fundamental changes in the process of extinction across development, which may have implications for our understanding of psychopathology across the lifespan. Specifically, this research shows that the process of extinction parallels the nonlinear function of prefrontal cortex development, such that extinction behaviour is similar in juvenile and adult rats, but involves different processes in infancy and adolescence (periods of rapid growth and pruning, respectively). Our previous studies have shown that early-life stress accelerates the transition between infant and juvenile extinction systems. In the current series of experiments, we examined whether the same early-life stress, maternal separation (MS), would lead to an earlier transition between the juvenile and adolescent extinction systems, and between the adolescent and adult extinction systems. We show that MS adolescent rats exhibit more adult-like extinction behaviour, and that adolescent-like extinction emerges earlier in development (i.e. in pre-adolescent rats). These results may have important implications for the understanding and treatment of anxiety symptoms in adolescent populations.


Trends in Neurosciences | 2014

The elusive engram: what can infantile amnesia tell us about memory?

Bridget L. Callaghan; Stella Li; Rick Richardson

Revealing the engram is one of the greatest challenges in neuroscience. Many researchers focus on understanding the cellular and molecular mechanisms underlying the formation and maintenance of the engram, but an underutilized approach has been to investigate analogous processes associated with forgetting. Infant rodents present an ideal model for this purpose because they display a rapid form of non-pathological forgetting known as infantile amnesia (IA). Despite the widespread importance of this interesting phenomenon, the study of the neural bases of IA has remained largely neglected. Here, we consider what IA can tell us about memory. We argue that to understand the mechanisms underlying the engram we must also gain an appreciation of the mechanisms that drive forgetting.


Behavioral Neuroscience | 2014

Early emergence of adult-like fear renewal in the developing rat after chronic corticosterone treatment of the dam or the pups.

Bridget L. Callaghan; Rick Richardson

Early adversity increases the risk of nearly all mental health disorders. Although tractable animal models exist to probe the psychobiology of early adversity, the empirical research has focused largely on adult outcomes. In the current studies we examined how early exposure to the stress hormone corticosterone (CORT) affects the maturation of fear extinction in infant rats. Whereas juvenile and adult rodents exhibit extinction learning that is relapse-prone (i.e., they show renewal and reinstatement of extinguished fear), under typical rearing conditions the extinction system in infant rats appears to be relapse-resistant (i.e., extinction leads to a permanent reduction in conditioned fear). In the current studies we tested the hypothesis that chronically exposing infant rats to CORT, either indirectly (through maternal drinking water) or directly (via insertion of an osmotic pump), leads to an early transition into the adult-like extinction system (i.e., evidence of the renewal effect). Although some differences were observed between the 2 methods of CORT exposure, the data showed that infants exposed to CORT via either method exhibited premature emergence of adult-like extinction learning (i.e., they exhibited the renewal effect). The theoretical implications of these findings for typical and abnormal development of emotion learning systems, as well as their practical applications in the context of prevention and treatment of mental health disorders, are discussed.

Collaboration


Dive into the Bridget L. Callaghan's collaboration.

Top Co-Authors

Avatar

Rick Richardson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice M. Kan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Stella Li

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Bronwyn M. Graham

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge